Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of room temperature magnetic skyrmion and its application

Liu Yi Qian Zheng-Hong Zhu Jian-Guo

Citation:

Research progress of room temperature magnetic skyrmion and its application

Liu Yi, Qian Zheng-Hong, Zhu Jian-Guo
PDF
HTML
Get Citation
  • It has been found that many magnetic materials possess the properties arising from skyrmions at room temperature. In addition to the common interaction energy, chiral interaction is also needed to form the skyrmion in magnetic material. There are four chiral magnetic interactions, namely: 1) Dzyaloshinskii-Moriya (DM) interaction; 2) long-ranged magnetic dipolar interaction; 3) four-spin exchange interaction; 4) frustrated exchanged interaction. Through the competition between exchange interaction and chiral interaction, magnetic skyrmion can be realized in magnetic material subject to a certain magnetic field and temperature. The skyrmion generated by the DM interaction features small size (5–100 nm), which is easy to adjust. The skyrmion can be driven by magnetic field or ultralow current density. The magnetic materials with skyrmion can exhibit the properties related to the skyrmion Hall effect, the topological Hall effect and the emergent electrodynamics, which are closely related to the skyrmion number. The existence of skyrmion in the magnetic material can be indirectly measured by topological Hall effect. The movement of skyrmion can be driven by spin polarized current in the direction either parallel or perpendicular to the current direction. The movement of the skyrmion driven by spin polarized currents will continue when the current is present, and will disappear when the current disappears. In previous studies, magnetic skyrmions were realized in a variety of materials. However magnetic skyrmions were found only in very limited types of single crystal materials at room temperature or near room temperature. In recent years, scientists have discovered a variety of magnetic skyrmion materials at room temperature, including film materials (such as multilayer materials, artificial skyrmion materials) and crystal materialssuch as β-Mn-type Co10–x/2Zn10–x/2Mnx, Fe3Sn2. Among all kinds of room temperature magnetic skyrmion materials, the most valuable one is the multilayer film material. The Skyrmion multilayer film has the advantages of small size, adjustable material type, simple preparation, good temperature stability, good device integration,etc. At the same time, skyrmion multilayer film is very easy to optimize by adjusting and constructing a special structure that has the wanted types of materials each with a certain thickness. Artificial skyrmion material obtains artificial skyrmion by constructing a micro-nano structure, therefore the artificial skyrmion with high-temperature stability can be realized by choosing high Curie temperature materials. There are a variety of materials which can realize the skyrmion above room temperature, such as Co9Zn9Mn2 (300–390 K) and Fe3Sn2 (100–400 K). These room temperature materials further widen the temperature application range of skyrmion. The room temperature materials can be prepared or characterized by a variety of techniquesincluding sputtering for fabrication and X-ray magnetic circular dichroism-photoemission electron microscopy (XMCD-PEEM) for characterization. The discovery of the magnetic skyrmion materials at room temperature not only enriches the research content of materials science, but also makes the skyrmion widely applicable in novel electronic devices (such as racetrack memory, microwave detector, oscillators). Because the skyrmion has the advantages of small size, ultra-low driving current density, and topological stability, it is expected to produce racetrack memory based on the skyrmion with low energy consumption, non-volatile and high density. The MTJ microwave detector based on skyrmion can be achieved with no external magnetic field nor bias current but with low power input (< 1.0 μW); the sensitivity of the microwave detector can reach 2000 V·W–1. The frequency of the oscillator based on skyrmion can be tuned by magnetic field or current, and moreover, the oscillato is very easy to integrate with IC. In this paper, first, the basic characteristic of magnetic skyrmion is introduced; and then room temperature magnetic skyrmion is reviewed; finally the advances of the racetrack memory, microwave detectors and oscillators are introduced, highlighting the development trend of room temperature magnetic skyrmion.
      Corresponding author: Qian Zheng-Hong, zqian@hdu.edu.cn ; Zhu Jian-Guo, nic0400@scu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFF01010701) and the Fundamental Research Funds for the Central Universities, China
    [1]

    Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899Google Scholar

    [2]

    Finocchio G, Büttner F, Tomasello R, Carpentieri M, Kläui M 2016 J. Phys. D: Appl. Phys. 49 423001Google Scholar

    [3]

    Moriya T 1960 Phys. Rev. 120 91Google Scholar

    [4]

    Zhang X, Zhou Y, Song K, Park T, Xia J, Ezawa M, Liu X, Zhao W, Zhao G, Woo S 2020 J. Phys.: Condens. Matter. 32 143001Google Scholar

    [5]

    栗佳 2017 物理 46 281Google Scholar

    Li J 2017 Physics 46 281Google Scholar

    [6]

    Skyrme T H R 1962 Nucl. Phys. 31 556Google Scholar

    [7]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152Google Scholar

    [8]

    Sondhi S L, Karlhede A, Kivelson S A, Rezayi E H 1993 Phys. Rev. B 47 16419Google Scholar

    [9]

    Rössler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797Google Scholar

    [10]

    Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P 2009 Science 323 915Google Scholar

    [11]

    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blügel S 2011 Nat. Phys. 7 713Google Scholar

    [12]

    Park H S, Yu X, Aizawa S, Tanigaki T, Akashi T, Takahashi Y, Matsuda T, Kanazawa N, Onose Y, Shindo D, Tonomura A, Tokura Y 2014 Nat. Nanotechnol. 9 337Google Scholar

    [13]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106Google Scholar

    [14]

    Jiang W J, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O 2015 Science 349 283Google Scholar

    [15]

    Li J, Tan A, Moon K W, Doran A, Marcus M A, Young A T, Arenholz E, Ma S, Yang R F, Hwang C, Qiu Z Q 2014 Nat. Commun. 5 4704Google Scholar

    [16]

    Wang W, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Hou Z, Zhang X, Li X, Liu E 2016 Adv. Mater. 28 6887Google Scholar

    [17]

    Jiang W, Zhang X, Yu G, Zhang W, Wang X, Jungfleisch M B, Pearson J E, Cheng X, Heinonen O, Wang K L 2016 Nat. Mater. 13 162Google Scholar

    [18]

    Moreau-Luchaire C, Moutafis C, Reyren N, Sampaio J, Vaz C A F, van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhüter P, George J M, Weigand M, Raabe J, Cros V, Fert A 2016 Nat. Nanotechnol. 11 444Google Scholar

    [19]

    Woo S, Litzius K, Krüger B, Im M, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M, Fischer P, Kläui M, Beach G S D 2016 Nat. Mater. 15 501Google Scholar

    [20]

    Jiang W, Chen G, Liu K, Zang J, Te Velthuis S G E, Hoffmann A 2017 Phys. Rep. 704 1Google Scholar

    [21]

    Boulle O, Vogel J, Yang H, Pizzini S, de Souza Chaves D, Locatelli A, Menteş T O, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Roussigné Y, Stashkevich A, Chérif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M, Gaudin G 2016 Nat. Nanotechnol. 11 449Google Scholar

    [22]

    Sun L, Cao R X, Miao B F, Feng Z, You B, Wu D, Zhang W, Hu A, Ding H F 2013 Phys. Rev. Lett. 110 167201Google Scholar

    [23]

    Woo S, Song K M, Zhang X, Zhou Y, Ezawa M, Liu X, Finizio S, Raabe J, Lee N J, Kim S, Park S, Kim Y, Kim J, Lee D, Lee O, Choi J W, Min B, Koo H C, Chang J 2018 Nat. Commun. 9 959Google Scholar

    [24]

    Karube K, White J S, Morikawa D, Bartkowiak M, Kikkawa A, Tokunaga Y, Arima T, Ronnow H M, Tokura Y, Taguchi Y 2017 Phys. Rev. Materials 1 74405Google Scholar

    [25]

    Tokunaga Y, Yu X Z, White J S, Rønnow H M, Morikawa D, Taguchi Y, Tokura Y 2015 Nat. Commun. 6 7638Google Scholar

    [26]

    侯志鹏, 丁贝, 李航, 徐桂舟, 王文洪, 吴光恒 2018 67 137509Google Scholar

    Hou Z, Ding B, Li H, Xu G, Wang W, Wu G H 2018 Acta Phys. Sin. 67 137509Google Scholar

    [27]

    Fert A, Reyren N, Cros V 2017 Nat. Rev. Mater. 2 17031Google Scholar

    [28]

    Kanazawa N, Seki S, Tokura Y 2017 Adv. Mater. 29 1603227Google Scholar

    [29]

    Litzius K, Lemesh I, Krüger B, Bassirian P, Caretta L, Richter K, Büttner F, Sato K, Tre-tiakov O A, Förster J, Reeve R M, Weigand M, Bykova I, Stoll H, Schütz G, Beach G S D, Kläui M 2017 Nat. Phys. 13 170Google Scholar

    [30]

    Liu Y, Luo Y, Qian Z, Zhu J 2018 Chin. Phys. B 27 127503Google Scholar

    [31]

    Seki S, Mochizuki M 2016 Skyrmions in Magnetic Materials (Switzerland: Springer International Publishing) p35

    [32]

    Jonietz F, Mühlbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P, Duine R A, Everschor K, Garst M, Rosch A 2010 Science 330 1648Google Scholar

    [33]

    Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y 2012 Nat. Commun. 3 988Google Scholar

    [34]

    Ao P, Thouless D J 1993 Phys. Rev. Lett. 70 2158Google Scholar

    [35]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901Google Scholar

    [36]

    Seki S, Tokura Y 2012 Science 336 198Google Scholar

    [37]

    Okamura Y, Kagawa F, Seki S, Tokura Y 2016 Nat. Commun. 7 12669Google Scholar

    [38]

    Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, Bergmann K V, Kubetzka A, Wiesendanger R 2013 Science 341 636Google Scholar

    [39]

    Milde P, Köhler D, Seidel J, Eng L M, Bauer A, Chacon A, Kindervater J, Mühlbauer S, Pfleiderer C, Buhrandt S 2013 Science 340 1076Google Scholar

    [40]

    Gilbert D A, Maranville B B, Balk A L, Kirby B J, Fischer P, Pierce D T, Unguris J, Borchers J A, Liu K 2015 Nat. Commun. 6 8462Google Scholar

    [41]

    Karube K, White J S, Reynolds N, Gavilano J L, Oike H, Kikkawa A, Kagawa F, Tokunaga Y, Rønnow H M, Tokura Y, Taguchi Y 2016 Nat. Mater. 15 1237Google Scholar

    [42]

    Yu X, Mostovoy M, Tokunaga Y, Zhang W, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N, Tokura Y 2012 Proc. Natl. Acad. Sci. USA 109 8856Google Scholar

    [43]

    Yu G, Upadhyaya P, Li X, Li W, Kim S K, Fan Y, Wong K L, Tserkovnyak Y, Amiri P K, Wang K L 2016 Nano Lett. 16 1981Google Scholar

    [44]

    Cao A, Zhang X, Koopmans B, Peng S, Zhang Y, Wang Z, Yan S, Yang H, Zhao W 2018 Nanoscale 10 12062Google Scholar

    [45]

    Soumyanarayanan A, Raju M, Oyarce A L G, Tan A K C, Im M, Petrovic A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F, Panagopoulos C 2017 Nat. Mater. 16 898Google Scholar

    [46]

    Dovzhenko Y, Casola F, Schlotter S, Zhou T X, Büttner F, Walsworth R L, Beach G S D, Yacoby A 2018 Nat. Commun. 9 2712Google Scholar

    [47]

    Woo S, Song K M, Zhang X, Ezawa M, Zhou Y, Liu X, Weigand M, Finizio S, Raabe J, Park M, Lee K, Choi J W, Min B, Koo H C, Chang J 2018 Nat. Electron. 1 288Google Scholar

    [48]

    White J S, Prša K, Huang P, Omrani A A, živković I, Bartkowiak M, Berger H, Magrez A, Gavilano J L, Nagy G, Zang J, Rønnow H M 2014 Phys. Rev. Lett. 113 107203Google Scholar

    [49]

    Yu X Z, Tokunaga Y, Kaneko Y, Zhang W Z, Kimoto K, Matsui Y, Taguchi Y, Tokura Y 2014 Nat. Commun. 5 3198Google Scholar

    [50]

    Chen G, Mascaraque A, Diaye A, Schmid A 2015 Appl. Phys. Lett. 106 242404Google Scholar

    [51]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Boeni P 2009 Phys. Rev. Lett. 102 186602Google Scholar

    [52]

    Shao Q, Liu Y, Yu G, Kim S K, Che X, Tang C, He Q L, Tserkovnyak Y, Shi J, Wang K L 2019 Nat. Electron. 2 182Google Scholar

    [53]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190Google Scholar

    [54]

    Hirohata A, Yamada K, Nakatani Y, Prejbeanu I, Dieny B, Pirro P, Hillebrands B 2020 J. Magn. Magn. Mater. 509 166711Google Scholar

    [55]

    Zhang X C, Zhou Y, Ezawa M 2016 Nat. Commun. 7 10293Google Scholar

    [56]

    Hou Z, Zhang Q, Xu G, Gong C, Ding B, Wang Y, Li H, Liu E, Xu F, Zhang H 2018 Nano Lett. 18 1274Google Scholar

    [57]

    Müller J 2017 New J. Phys. 19 25002Google Scholar

    [58]

    Leonov A O, Loudon J C, Bogdanov A N 2016 Appl. Phys. Lett. 109 172404Google Scholar

    [59]

    夏静, 韩宗益, 宋怡凡, 江文婧, 林柳蓉, 张溪超, 刘小晰, 周艳 2018 67 137505Google Scholar

    Xia J, Han Z Y, Song Y F, Jiang W J, Lin L R, Zhang X C, Liu X X, Zhou Y 2018 Acta Phys. Sin. 67 137505Google Scholar

    [60]

    Okamura Y, Kagawa F, Mochizuki M, Kubota M, Seki S, Ishiwata S, Kawasaki M, Onose Y, Tokura Y 2013 Nat. Commun. 4 2391Google Scholar

    [61]

    Seki S, Mochizuki M 2013 Phys. Rev. B 87 134403Google Scholar

    [62]

    Finocchio G, Ricci M, Tomasello R, Giordano A, Lanuzza M, Puliafito V, Burrascano P, Azzerboni B, Carpentieri M 2015 Appl. Phys. Lett. 107 262401Google Scholar

    [63]

    Fang B, Carpentieri M, Hao X, Jiang H, Katine J A, Krivorotov I N, Ocker B, Langer J, Wang K L, Zhang B, Azzerboni B, Amiri P K, Finocchio G, Zeng Z 2016 Nat. Commun. 7 11259Google Scholar

    [64]

    Zhang S, Wang J, Zheng Q, Zhu Q, Liu X, Chen S, Jin C, Liu Q, Jia C, Xue D 2015 New J. Phys. 17 23061Google Scholar

    [65]

    Zeng Z, Finocchio G, Jiang H 2013 Nanoscale 5 2219Google Scholar

    [66]

    Zhou Y, Iacocca E, Awad A A, Dumas R K, Zhang F C, Braun H B, Akerman J 2015 Nat. Commun. 6 8193Google Scholar

    [67]

    Liu R H, Lim W L, Urazhdin S 2015 Phys. Rev. Lett. 114 137201Google Scholar

  • 图 1  不同自旋结构的斯格明子示意图 (a) 奈尔型斯格明子; (b) 布洛赫型斯格明子; (c) 奈尔型斯格明子; (d)布洛赫型斯格明子; (e)−(h) 反斯格明子; (i)单位磁矩方位示意图

    Figure 1.  The spin structure diagram of different skyrmions: (a)Néel type skyrmion; (b) Bloch type skyrmion; (c) Néel type skyrmion; (d) Bloch type skyrmion; (e)−(h) anti-skyrmion; (i) the altitude and azimuth diagram of unit magnetic moment.

    图 2  (a)斯格明子在电流作用下的运动及电子在涌生磁场作用生成的洛伦兹力作用下的偏转[1]; (b) 斯格明子振荡示意图[1]

    Figure 2.  (a) Skyrmion move under the flow of electrons. Electrons are deflected by the Lorentz force due to the emergent magnetic field[1]; (b) oscillation diagram of magnetic skyrmion[1].

    图 4  (a)实空间中四方和三方斯格明子晶格示意图[24]; (b) Co9Zn9Mn2单晶的温度-磁场相图(T-H)[24]

    Figure 4.  (a) Schematic figures of a triangular-lattice skyrmion crystal (SkX) and a square like-lattice SkX in real space[24]; (b) temperature(T)- magnetic field(H) state diagram of bulk Co9Zn9Mn2[24].

    图 3  (a) Ta/CoFeB/TaOx三层膜桥式结构中斯格明子的形成[14]; (b) 在Pt/Co/MgO三层膜正方型结构中的斯格明子[21]; (c)在Pt和Ir层中Co层中DM作用的的叠加[18]; (d)在脉冲10 V电场下, 迷宫磁畴转化为斯格明子[19]; (e) 通过磁光克尔显微镜在薄膜Ta/CoFeB/TaOx直接观察到斯格明子霍尔效应[17]; (f)斯格明子霍尔角与电流密度的函数关系[17]

    Figure 3.  (a) Skyrmion bubbles realized at the exit of a constriction of Ta/CoFeB/TaOx trilayer[14]; (b) skyrmion realized in a square of Pt/Co/MgO trilayer[21]; (c) additive DM for Co between Pt and Ir[18];(d) with the electric field pulse, the labyrinth domain is transformed into the skyrmion[19] (e) skyrmion Hall effect is clearly observed in successive Kerr microscopy images of a Ta/CoFeB/TaOx trilayer[17]; (f) phase diagram of the skyrmion Hall angle as a function of current density[17].

    图 5  (a) 垂直赛道存储器示意图; (b) 水平赛道示意图; (c) 信息读出; (d) 信息写入; (e)赛道存储器的排列示意图[53]

    Figure 5.  (a) Schematic diagram of vertical racetrack; (b) schematic diagram of horizontal racetrack; (c) reading of information; (d) writing of information; (e) schematic diagram of racetrack storage array[53].

    图 6  (a) 微波探测器及其电路原理图; (b) 斯格明子螺旋示意图[64]

    Figure 6.  (a) Microwave detector devices and circuit schematics; (b) skyrmion rotates around the nano-contact[64].

    表 1  手性相互作用的类型[1]

    Table 1.  Types of chiral interactions[1].

    作用机制磁偶极相
    互作用
    DM作用阻挫交
    换作用
    四自旋交换
    相互作用
    斯格明子
    尺寸/nm
    100—10005—100~1~1
    典型材料MnNiGa[16]MnSi[10]Fe3Sn2[26]Fe/Ir(111)[11]
    DownLoad: CSV

    表 2  低温磁性斯格明子材料

    Table 2.  Magnetic skyrmions materials at low temperature

    材料材料
    种类
    斯格明
    子种类
    制备方法斯格明子
    温度/K
    MnSi[10]单晶布洛赫布里奇
    曼法
    29
    Fe0.5Co0.5Si[35]单晶布洛赫布里奇
    曼法
    25
    FeGe[13]单晶布洛赫布里奇
    曼法
    60—260
    FeGe[33]单晶布洛赫布里奇
    曼法
    250—270
    Fe1–xCoxSi
    (x = 0.5)[39]
    单晶布洛赫布里奇
    曼法
    10
    Fe/Ir[11]金属超
    薄层
    奈尔型分子束
    外延法
    11
    PdFe/Ir(1 1 1)[38]金属超
    薄层
    奈尔型分子束
    外延法
    4.2
    Cu2OSeO3[36]单晶布洛赫布里奇
    曼法
    60
    FeGe1–xSix
    (x ~ 0.25)[39]
    单晶布洛赫布里奇
    曼法
    95
    DownLoad: CSV

    表 3  室温斯格明子材料

    Table 3.  Magnetic skyrmions materials at room temperature.

    材料类型典型材料制备方法斯格明子温
    度范围/K
    斯格明子的
    尺寸/nm
    薄膜材料多层膜材料Ta/CoFeB/TaOx[17]
    (Ir/Co/Pt)10[18]
    Pt/Co/Ta, Pt/CoFeB/MgO[19]
    直流溅射室温1000
    30—90
    100
    反铁磁/铁磁材料薄膜[Pt/Gd25Fe65.6Co9.4/MgO]n[23]直流溅射室温180
    人工斯格明子材料Co/Ni/Cu(001)[15]
    Co/[Co/Pd]n, Co/Pd[40]
    直流溅射室温1000
    单晶材料手性对称材料Co8Zn8Mn4[41]
    Co8Zn9Mn3[25]
    (β-Mn结构)
    布里奇曼法284—300
    311—320
    > 125
    中心对
    称材料
    铁氧体Ba(Fe1–xScxMg0.05)12O19[42]布里奇曼法室温200
    金属间化合物MnNiGa[16]布里奇曼法100—34090
    阻挫型Fe3Sn2[26]聚焦离子束技术(FIB)100—340300
    DownLoad: CSV

    表 4  室温薄膜材料中斯格明子在电流驱动下运动

    Table 4.  The motion of skyrmion in room temperature films driven by current.

    材料驱动电流/107A·cm–2移动速度/m·s–1霍尔角/(°)温度磁场/mT
    Ta/CoFeB/TaOx[17]0.620.7532室温0.52
    (Pt/Co/Ta)15[19]3.505019.4室温
    (Pt/CoFeB/MgO)15[19]5.001004.01室温
    [Pt/Gd25Fe65.6Co9.4)/MgO]20[23]3.55 5020室温145.00
    [Pt/CoFeB/MgO]15[29]4.2010030室温30.00
    DownLoad: CSV

    表 5  斯格明子材料常见制备方式

    Table 5.  Common preparation method of skyrmion materials.

    方式材料类型制备时间优点
    直流溅射薄膜材料3 h成本低, 适合工业量产
    分子束外延薄膜材料 > 1 d薄膜平整度高
    布里奇曼法单晶材料1 m制作大尺寸器件
    DownLoad: CSV

    表 6  室温斯格明子的表征技术一览表[4]

    Table 6.  List of room temperature skyrmion characterization technologies[4].

    方式分辨率
    /nm
    优点适用场景
    XMCD-
    PEEM
    ~25平面内高自
    旋分辨率
    外层磁性
    斯格明子
    STXM~25可探测磁场及电场
    敏感材料实时监控
    多层膜内部的斯
    格明子结构
    SPLEEM~10平面高分辨率高
    的测试敏感度
    原位沉积表面
    的斯格明子
    X射线
    全息术
    ~10无误差探测实时
    监控(~70 ps)
    纳米尺寸的多层
    膜内部的斯格
    明子结构
    MOKEM1000操作简单易行尺寸大于1 μm
    的斯格明子
    DownLoad: CSV
    Baidu
  • [1]

    Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899Google Scholar

    [2]

    Finocchio G, Büttner F, Tomasello R, Carpentieri M, Kläui M 2016 J. Phys. D: Appl. Phys. 49 423001Google Scholar

    [3]

    Moriya T 1960 Phys. Rev. 120 91Google Scholar

    [4]

    Zhang X, Zhou Y, Song K, Park T, Xia J, Ezawa M, Liu X, Zhao W, Zhao G, Woo S 2020 J. Phys.: Condens. Matter. 32 143001Google Scholar

    [5]

    栗佳 2017 物理 46 281Google Scholar

    Li J 2017 Physics 46 281Google Scholar

    [6]

    Skyrme T H R 1962 Nucl. Phys. 31 556Google Scholar

    [7]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152Google Scholar

    [8]

    Sondhi S L, Karlhede A, Kivelson S A, Rezayi E H 1993 Phys. Rev. B 47 16419Google Scholar

    [9]

    Rössler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797Google Scholar

    [10]

    Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P 2009 Science 323 915Google Scholar

    [11]

    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blügel S 2011 Nat. Phys. 7 713Google Scholar

    [12]

    Park H S, Yu X, Aizawa S, Tanigaki T, Akashi T, Takahashi Y, Matsuda T, Kanazawa N, Onose Y, Shindo D, Tonomura A, Tokura Y 2014 Nat. Nanotechnol. 9 337Google Scholar

    [13]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106Google Scholar

    [14]

    Jiang W J, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O 2015 Science 349 283Google Scholar

    [15]

    Li J, Tan A, Moon K W, Doran A, Marcus M A, Young A T, Arenholz E, Ma S, Yang R F, Hwang C, Qiu Z Q 2014 Nat. Commun. 5 4704Google Scholar

    [16]

    Wang W, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Hou Z, Zhang X, Li X, Liu E 2016 Adv. Mater. 28 6887Google Scholar

    [17]

    Jiang W, Zhang X, Yu G, Zhang W, Wang X, Jungfleisch M B, Pearson J E, Cheng X, Heinonen O, Wang K L 2016 Nat. Mater. 13 162Google Scholar

    [18]

    Moreau-Luchaire C, Moutafis C, Reyren N, Sampaio J, Vaz C A F, van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhüter P, George J M, Weigand M, Raabe J, Cros V, Fert A 2016 Nat. Nanotechnol. 11 444Google Scholar

    [19]

    Woo S, Litzius K, Krüger B, Im M, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M, Fischer P, Kläui M, Beach G S D 2016 Nat. Mater. 15 501Google Scholar

    [20]

    Jiang W, Chen G, Liu K, Zang J, Te Velthuis S G E, Hoffmann A 2017 Phys. Rep. 704 1Google Scholar

    [21]

    Boulle O, Vogel J, Yang H, Pizzini S, de Souza Chaves D, Locatelli A, Menteş T O, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Roussigné Y, Stashkevich A, Chérif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M, Gaudin G 2016 Nat. Nanotechnol. 11 449Google Scholar

    [22]

    Sun L, Cao R X, Miao B F, Feng Z, You B, Wu D, Zhang W, Hu A, Ding H F 2013 Phys. Rev. Lett. 110 167201Google Scholar

    [23]

    Woo S, Song K M, Zhang X, Zhou Y, Ezawa M, Liu X, Finizio S, Raabe J, Lee N J, Kim S, Park S, Kim Y, Kim J, Lee D, Lee O, Choi J W, Min B, Koo H C, Chang J 2018 Nat. Commun. 9 959Google Scholar

    [24]

    Karube K, White J S, Morikawa D, Bartkowiak M, Kikkawa A, Tokunaga Y, Arima T, Ronnow H M, Tokura Y, Taguchi Y 2017 Phys. Rev. Materials 1 74405Google Scholar

    [25]

    Tokunaga Y, Yu X Z, White J S, Rønnow H M, Morikawa D, Taguchi Y, Tokura Y 2015 Nat. Commun. 6 7638Google Scholar

    [26]

    侯志鹏, 丁贝, 李航, 徐桂舟, 王文洪, 吴光恒 2018 67 137509Google Scholar

    Hou Z, Ding B, Li H, Xu G, Wang W, Wu G H 2018 Acta Phys. Sin. 67 137509Google Scholar

    [27]

    Fert A, Reyren N, Cros V 2017 Nat. Rev. Mater. 2 17031Google Scholar

    [28]

    Kanazawa N, Seki S, Tokura Y 2017 Adv. Mater. 29 1603227Google Scholar

    [29]

    Litzius K, Lemesh I, Krüger B, Bassirian P, Caretta L, Richter K, Büttner F, Sato K, Tre-tiakov O A, Förster J, Reeve R M, Weigand M, Bykova I, Stoll H, Schütz G, Beach G S D, Kläui M 2017 Nat. Phys. 13 170Google Scholar

    [30]

    Liu Y, Luo Y, Qian Z, Zhu J 2018 Chin. Phys. B 27 127503Google Scholar

    [31]

    Seki S, Mochizuki M 2016 Skyrmions in Magnetic Materials (Switzerland: Springer International Publishing) p35

    [32]

    Jonietz F, Mühlbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P, Duine R A, Everschor K, Garst M, Rosch A 2010 Science 330 1648Google Scholar

    [33]

    Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y 2012 Nat. Commun. 3 988Google Scholar

    [34]

    Ao P, Thouless D J 1993 Phys. Rev. Lett. 70 2158Google Scholar

    [35]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901Google Scholar

    [36]

    Seki S, Tokura Y 2012 Science 336 198Google Scholar

    [37]

    Okamura Y, Kagawa F, Seki S, Tokura Y 2016 Nat. Commun. 7 12669Google Scholar

    [38]

    Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, Bergmann K V, Kubetzka A, Wiesendanger R 2013 Science 341 636Google Scholar

    [39]

    Milde P, Köhler D, Seidel J, Eng L M, Bauer A, Chacon A, Kindervater J, Mühlbauer S, Pfleiderer C, Buhrandt S 2013 Science 340 1076Google Scholar

    [40]

    Gilbert D A, Maranville B B, Balk A L, Kirby B J, Fischer P, Pierce D T, Unguris J, Borchers J A, Liu K 2015 Nat. Commun. 6 8462Google Scholar

    [41]

    Karube K, White J S, Reynolds N, Gavilano J L, Oike H, Kikkawa A, Kagawa F, Tokunaga Y, Rønnow H M, Tokura Y, Taguchi Y 2016 Nat. Mater. 15 1237Google Scholar

    [42]

    Yu X, Mostovoy M, Tokunaga Y, Zhang W, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N, Tokura Y 2012 Proc. Natl. Acad. Sci. USA 109 8856Google Scholar

    [43]

    Yu G, Upadhyaya P, Li X, Li W, Kim S K, Fan Y, Wong K L, Tserkovnyak Y, Amiri P K, Wang K L 2016 Nano Lett. 16 1981Google Scholar

    [44]

    Cao A, Zhang X, Koopmans B, Peng S, Zhang Y, Wang Z, Yan S, Yang H, Zhao W 2018 Nanoscale 10 12062Google Scholar

    [45]

    Soumyanarayanan A, Raju M, Oyarce A L G, Tan A K C, Im M, Petrovic A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F, Panagopoulos C 2017 Nat. Mater. 16 898Google Scholar

    [46]

    Dovzhenko Y, Casola F, Schlotter S, Zhou T X, Büttner F, Walsworth R L, Beach G S D, Yacoby A 2018 Nat. Commun. 9 2712Google Scholar

    [47]

    Woo S, Song K M, Zhang X, Ezawa M, Zhou Y, Liu X, Weigand M, Finizio S, Raabe J, Park M, Lee K, Choi J W, Min B, Koo H C, Chang J 2018 Nat. Electron. 1 288Google Scholar

    [48]

    White J S, Prša K, Huang P, Omrani A A, živković I, Bartkowiak M, Berger H, Magrez A, Gavilano J L, Nagy G, Zang J, Rønnow H M 2014 Phys. Rev. Lett. 113 107203Google Scholar

    [49]

    Yu X Z, Tokunaga Y, Kaneko Y, Zhang W Z, Kimoto K, Matsui Y, Taguchi Y, Tokura Y 2014 Nat. Commun. 5 3198Google Scholar

    [50]

    Chen G, Mascaraque A, Diaye A, Schmid A 2015 Appl. Phys. Lett. 106 242404Google Scholar

    [51]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Boeni P 2009 Phys. Rev. Lett. 102 186602Google Scholar

    [52]

    Shao Q, Liu Y, Yu G, Kim S K, Che X, Tang C, He Q L, Tserkovnyak Y, Shi J, Wang K L 2019 Nat. Electron. 2 182Google Scholar

    [53]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190Google Scholar

    [54]

    Hirohata A, Yamada K, Nakatani Y, Prejbeanu I, Dieny B, Pirro P, Hillebrands B 2020 J. Magn. Magn. Mater. 509 166711Google Scholar

    [55]

    Zhang X C, Zhou Y, Ezawa M 2016 Nat. Commun. 7 10293Google Scholar

    [56]

    Hou Z, Zhang Q, Xu G, Gong C, Ding B, Wang Y, Li H, Liu E, Xu F, Zhang H 2018 Nano Lett. 18 1274Google Scholar

    [57]

    Müller J 2017 New J. Phys. 19 25002Google Scholar

    [58]

    Leonov A O, Loudon J C, Bogdanov A N 2016 Appl. Phys. Lett. 109 172404Google Scholar

    [59]

    夏静, 韩宗益, 宋怡凡, 江文婧, 林柳蓉, 张溪超, 刘小晰, 周艳 2018 67 137505Google Scholar

    Xia J, Han Z Y, Song Y F, Jiang W J, Lin L R, Zhang X C, Liu X X, Zhou Y 2018 Acta Phys. Sin. 67 137505Google Scholar

    [60]

    Okamura Y, Kagawa F, Mochizuki M, Kubota M, Seki S, Ishiwata S, Kawasaki M, Onose Y, Tokura Y 2013 Nat. Commun. 4 2391Google Scholar

    [61]

    Seki S, Mochizuki M 2013 Phys. Rev. B 87 134403Google Scholar

    [62]

    Finocchio G, Ricci M, Tomasello R, Giordano A, Lanuzza M, Puliafito V, Burrascano P, Azzerboni B, Carpentieri M 2015 Appl. Phys. Lett. 107 262401Google Scholar

    [63]

    Fang B, Carpentieri M, Hao X, Jiang H, Katine J A, Krivorotov I N, Ocker B, Langer J, Wang K L, Zhang B, Azzerboni B, Amiri P K, Finocchio G, Zeng Z 2016 Nat. Commun. 7 11259Google Scholar

    [64]

    Zhang S, Wang J, Zheng Q, Zhu Q, Liu X, Chen S, Jin C, Liu Q, Jia C, Xue D 2015 New J. Phys. 17 23061Google Scholar

    [65]

    Zeng Z, Finocchio G, Jiang H 2013 Nanoscale 5 2219Google Scholar

    [66]

    Zhou Y, Iacocca E, Awad A A, Dumas R K, Zhang F C, Braun H B, Akerman J 2015 Nat. Commun. 6 8193Google Scholar

    [67]

    Liu R H, Lim W L, Urazhdin S 2015 Phys. Rev. Lett. 114 137201Google Scholar

  • [1] Shi Meng, Wang Wei-Wei, Du Hai-Feng. Exploring approximate analytical expression for magnetic skyrmion structure based on symbolic regression method. Acta Physica Sinica, 2024, 73(1): 011201. doi: 10.7498/aps.73.20231473
    [2] Chen Jin-Long, Tao Ran, Li Chong, Zhang Jian-Lei, Fu Chen, Luo Jing-Ting. SnS2/In2O3 based gas sensors and its high performance of detecting NO2 at room temperature. Acta Physica Sinica, 2024, 73(10): 106801. doi: 10.7498/aps.73.20231554
    [3] Dong Yi-Meng, Sun Yong-Jiao, Hou Yu-Chen, Wang Bing-Liang, Lu Zhi-Yuan, Zhang Wen-Dong, Hu Jie. Preparation and room-temperature NO2 sensitivity of SnO2/ZnS heterojunctions gas sensor. Acta Physica Sinica, 2023, 72(16): 160701. doi: 10.7498/aps.72.20230735
    [4] Zhang Jing-Yan, Dou Peng-Wei, Zhao Yun-Chi, Zhang Shi-Lei, Liu Jia-Qiang, Qi Jie, Lü Hao-Chang, Liu Ruo-Yang, Yu Guang-Hua, Jiang Yong, Shen Bao-Gen, Wang Shou-Guo. Multi-field manipulation in Hall balance. Acta Physica Sinica, 2021, 70(4): 048501. doi: 10.7498/aps.70.20201799
    [5] Zhang Zhen-Zhen, Li Hua, Cao Jun-Cheng. Ultrafast terahertz detectors. Acta Physica Sinica, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [6] Dong Bo-Wen, Zhang Jing-Yan, Peng Li-Cong, He Min, Zhang Ying, Zhao Yun-Chi, Wang Chao, Sun Yang, Cai Jian-Wang, Wang Wen-Hong, Wei Hong-Xiang, Shen Bao-Gen, Jiang Yong, Wang Shou-Guo. Multi-field control on magnetic skyrmions. Acta Physica Sinica, 2018, 67(13): 137507. doi: 10.7498/aps.67.20180931
    [7] Liu Yi-Zhou, Zang Jiadong. Overview and outlook of magnetic skyrmions. Acta Physica Sinica, 2018, 67(13): 131201. doi: 10.7498/aps.67.20180619
    [8] Hu Yang-Fan, Wan Xue-Jin, Wang Biao. Magnetoelastic phenomena and mechanisms of magnetic skyrmion crystal. Acta Physica Sinica, 2018, 67(13): 136201. doi: 10.7498/aps.67.20180251
    [9] Hou Zhi-Peng, Ding Bei, Li Hang, Xu Gui-Zhou, Wang Wen-Hong, Wu Guang-Heng. Observation of new-type magnetic skymrions with extremerely high temperature stability and fabrication of skyrmion-based race-track memory device. Acta Physica Sinica, 2018, 67(13): 137509. doi: 10.7498/aps.67.20180419
    [10] Liang Xue, Zhao Li, Qiu Lei, Li Shuang, Ding Li-Hong, Feng You-Hua, Zhang Xi-Chao, Zhou Yan, Zhao Guo-Ping. Skyrmions-based magnetic racetrack memory. Acta Physica Sinica, 2018, 67(13): 137510. doi: 10.7498/aps.67.20180764
    [11] Li Wen-Jing, Guang Yao, Yu Guo-Qiang, Wan Cai-Hua, Feng Jia-Feng, Han Xiu-Feng. Skyrmions in magnetic thin film heterostructures. Acta Physica Sinica, 2018, 67(13): 131204. doi: 10.7498/aps.67.20180549
    [12] Chen Hao, Peng Tong-Jiang, Liu Bo, Sun Hong-Juan, Lei De-Hui. Effect of reduction temperature on structure and hydrogen sensitivity of graphene oxides at room temperature. Acta Physica Sinica, 2017, 66(8): 080701. doi: 10.7498/aps.66.080701
    [13] Wang Jia-Yu, Dai Yue-Hua, Zhao Yuan-Yang, Xu Jian-Bin, Yang Fei, Dai Guang-Zhen, Yang Jin. Research on charge trapping memory’s over erase. Acta Physica Sinica, 2014, 63(20): 203101. doi: 10.7498/aps.63.203101
    [14] Wang Jia-Yu, Zhao Yuan-Yang, Xu Jian-Bin, Dai Yue-Hua. Effect of defect on the programming speed of charge trapping memories. Acta Physica Sinica, 2014, 63(5): 053101. doi: 10.7498/aps.63.053101
    [15] Sun Zhi-Bin, Ma Hai-Qiang, Lei Ming, Yang Han-Dong, Wu Ling-An, Zhai Guang-Jie, Feng Ji. A single-photon detector in the near-infrared range. Acta Physica Sinica, 2007, 56(10): 5790-5795. doi: 10.7498/aps.56.5790
    [16] Peng Zi-Long, Han Xiu-Feng, Zhao Su-Fen, Wei Hong-Xiang, Du Guan-Xiang, Zhan Wen-Shan. Perpendicular current-driven magnetization switching in free layer of magnetic tunneling junctions and MRAM. Acta Physica Sinica, 2006, 55(2): 860-864. doi: 10.7498/aps.55.860
    [17] Sun Jin-Peng, Wang Tai-Hong. Coulomb blockade three-valued single-electron memory. Acta Physica Sinica, 2003, 52(10): 2563-2568. doi: 10.7498/aps.52.2563
    [18] XU FENG, LIU LIAO. PARTICLE DETECTOR MODEL FOR INSTANT RESPONSE. Acta Physica Sinica, 1988, 37(8): 1267-1274. doi: 10.7498/aps.37.1267
    [19] CHEN JI-SHU. THEORY OF THIN PYROELECTRIC FILM DETECTORS. Acta Physica Sinica, 1974, 23(6): 51-58. doi: 10.7498/aps.23.51
    [20] STAR-DETECTOR FOR π--MESONS А.Ф.Дунайцев,Ю.Д. Прокошкин. Acta Physica Sinica, 1960, 16(8): 471-478. doi: 10.7498/aps.16.471
Metrics
  • Abstract views:  15220
  • PDF Downloads:  785
  • Cited By: 0
Publishing process
  • Received Date:  26 June 2020
  • Accepted Date:  25 July 2020
  • Available Online:  02 December 2020
  • Published Online:  05 December 2020

/

返回文章
返回
Baidu
map