-
压电陶瓷能够通过正/逆压电效应实现电能与机械能之间的相互转化, 在电子信息、通信、传感等领域中具有广阔的应用前景. 压电陶瓷的压电性能对晶粒尺寸极为敏感, 其晶粒尺寸效应的研究受到了广泛关注. 本文对目前应用较多的几类钙钛矿型压电陶瓷, 包括钛酸钡、锆钛酸铅、铌酸钾钠、钛酸铋钠陶瓷的压电性能晶粒尺寸效应的研究与进展进行了综述; 总结了这些体系中晶粒尺寸的调控方法, 晶粒尺寸效应的表现规律, 同时回顾了相关物理模型与理论机制. 本文为系统理解压电性能的晶粒尺寸效应提供了指导, 并对压电陶瓷晶粒尺寸效应的未来研究方向做出了展望.Piezoelectric ceramics is a versatile functional material that can realize interconversion between electrical energy and mechanical energy. As the electrical properties of piezoelectric ceramics are extremely sensitive to the grain size variation, the investigation of grain size effect has attracted much attention. In this paper, the recent research progress of the grain size effect on perovskite piezoelectric ceramics, including barium titanate (BT), lead zirconate titanate (PZT), potassium sodium niobate (KNN), and sodium bismuth titanate (BNT), is comprehensively reviewed. We especially focus on topics including feasible ways of fabricating piezoelectric ceramics with the desired grain sizes, the influence of the grain size effect on piezoelectric properties, and the corresponding physical mechanisms. This review would be beneficial to understanding the influence of the grain size effect on piezoelectric properties. The review concludes with the prediction of the further investigation on the grain size effect.
-
Keywords:
- piezoelectric ceramics /
- piezoelectric properties /
- grain size controlling /
- grain size effect
[1] Jaffe B, Cook Jr W R, Jaffe H 1971 Piezoelectric Ceramics (Elsevier)
[2] Röedel J, Li J F 2018 MRS Bull. 43 576
Google Scholar
[3] Thong H C, Zhao C, Zhou Z, Wu C F, Liu Y X, Du Z Z, Li J F, Gong W, Wang K 2019 Mater. Today 29 37
Google Scholar
[4] Koruza J, Bell A J, Frömling T, Webber K G, Wang K, Rödel J 2018 J. Materiomics 4 13
Google Scholar
[5] Wul B 1946 Nature 157 808
[6] Roberts S 1947 Phys. Rev. 71 890
Google Scholar
[7] Haertling G H 1999 J. Am. Ceram. Soc. 82 797
Google Scholar
[8] Jaffe B, Roth R, Marzullo S 1955 J. Res. Natl. Bur. Stand. 55 239
Google Scholar
[9] Rödel J, Webber K G, Dittmer R, Jo W, Kimura M, Damj anovic D 2015 J. Eur. Ceram. Soc. 35 1659
Google Scholar
[10] EU-Directive 2002/95/EC, European Commision, (2003), https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3 A32002 L0095
[11] Wu J, Xiao D, Zhu J 2015 Chem. Rev. 115 2559
Google Scholar
[12] Zheng T, Wu J, Xiao D, Zhu J 2018 Prog. Mater Sci. 98 552
Google Scholar
[13] Zhang Y, Li J F 2019 J. Mater. Chem. C 7 4284
Google Scholar
[14] Liu Q, Zhang Y, Gao J, Zhou Z, Wang H, Wang K, Zhang X, Li L, Li J F 2018 Energy. Environ. Sci. 11 3531
Google Scholar
[15] Liu Q, Zhang Y, Gao J, Zhou Z, Yang D, Lee K Y, Studer A, Hinterstein M, Wang K, Zhang X 2020 Natl. Sci. Rev. 7 355
Google Scholar
[16] Liu X, Tan X 2016 Adv. Mater. 28 574
Google Scholar
[17] Lee H J, Ural S O, Chen L, Uchino K, Zhang S J 2012 J. Am. Ceram. Soc. 95 3383
Google Scholar
[18] Hao J, Li W, Zhai J, Chen H 2019 Mater. Sci. Eng. R. Rep. 135 1
Google Scholar
[19] Jillek W, Yung W 2005 Int. J. Adv. Manuf. Technol. 25 350
Google Scholar
[20] Kniekamp H, Heywang W 1954 Z. Angew. Phys 6 385
[21] Martirena H, Burfoot J 1974 J. Phys. C: Solid. State. Phys 7 3182
Google Scholar
[22] Kinoshita K, Yamaji A 1976 J. Appl. Phys. 47 371
Google Scholar
[23] Arlt G, Hennings D, De With G 1985 J. Appl. Phys. 58 1619
Google Scholar
[24] Ghayour H, Abdellahi M 2016 Powder Technol. 292 84
Google Scholar
[25] Randall C A, Kim N, Kucera J P, Cao W, Shrout T R 1998 J. Am. Ceram. Soc. 81 677
Google Scholar
[26] Pramanik R, Sahukar M K, Mohan Y, Praveenkumar B, Sangawar S R, Arockiarajan A 2019 Ceram. Int. 45 5731
Google Scholar
[27] Huan Y, Wang X, Fang J, Li L 2014 J. Eur. Ceram. Soc. 34 1445
Google Scholar
[28] Tan Y, Zhang J, Wu Y, Wang C, Koval V, Shi B, Ye H, McKinnon R, Viola G, Yan H 2015 Sci. Rep. 5 9953
Google Scholar
[29] Wang J, Zheng P, Yin R, Zheng L, Du J, Zheng L, Deng J, Song K, Qin H 2015 Ceram. Int. 41 14165
Google Scholar
[30] Zhang J L, Ji P F, Wu Y Q, Zhao X, Tan Y Q, Wang C L 2014 Appl. Phys. Lett. 104 222909
Google Scholar
[31] Men T L, Yao F Z, Zhu Z X, Wang K, Li J F 2016 J. Adv. Dielectr. 6 1650013
Google Scholar
[32] Rahaman M N 2003 Ceramic Processing and Sintering (CRC Press)
[33] Malič B, Koruza J, Hreščak J, Bernard J, Wang K, Fisher J G, Benčan A 2015 Materials 8 8117
Google Scholar
[34] Watanabe A, Fukui T, Nogi K, Kizaki Y, Noguchi Y, Miyayama M 2006 J. Ceram. Soc. Jpn. 114 97
Google Scholar
[35] Hsiang H I, Yen F S 1996 J. Am. Ceram. Soc. 79 1053
Google Scholar
[36] Kakimoto K i, Shinkai Y 2011 Jpn. J. Appl. Phys. 50 09NC13
Google Scholar
[37] Nath A, Jiten C, Singh K C 2010 Physica. B Condens. Matter. 405 430
Google Scholar
[38] 郭惠芬, 张兴堂, 刘兵, 李蕴才, 黄亚彬, 杜祖亮 2004 物理化学学报 20 113
Google Scholar
Guo H F, Zhang X T, Liu B, Li Y C, Huang Y B, Du Z L 2004 Acta Physico-chimica Sinica 20 113
Google Scholar
[39] Lu S W, Lee B I, Wang Z L, Samuels W D 2000 J. Cryst. Growth 219 269
Google Scholar
[40] Tokita K, Sato S 2006 Key Eng. Mater 301 219
[41] Guo L, Luo H, Gao J, Guo L, Yang J 2006 Mater. Lett. 60 3011
Google Scholar
[42] Chen D, Jiao X 2000 J. Am. Ceram. Soc. 83 2637
Google Scholar
[43] Mazdiyasni K S, Dolloff R, Smith J 1969 J. Am. Ceram. Soc. 52 523
Google Scholar
[44] Shiratori Y, Magrez A, Pithan C 2004 Chem. Phys. Lett. 391 288
Google Scholar
[45] Pithan C, Shiratori Y, Waser R, Dornseiffer J, Haegel F H 2006 J. Am. Ceram. Soc. 89 2908
Google Scholar
[46] Wei X, Xu G, Ren Z, Wang Y, Shen G, Han G 2008 J. Am. Ceram. Soc. 91 315
Google Scholar
[47] Viviani M, Lemaitre J, Buscaglia M, Nanni P 2000 J. Eur. Ceram. Soc. 20 315
Google Scholar
[48] Wada S, Chikamori H, Noma T, Suzuki T 2000 J. Mater. Sci. 35 4857
Google Scholar
[49] Bansal V, Poddar P, Ahmad A, Sastry M 2006 J. Am. Chem. Soc. 128 11958
Google Scholar
[50] Nuraje N, Su K, Haboosheh A, Samson J, Manning E P, Yang N l, Matsui H 2006 Adv. Mater. 18 807
Google Scholar
[51] Zheng P, Zhang J L, Tan Y Q, Wang C L 2012 Acta Mater. 60 5022
Google Scholar
[52] Buscaglia V, Buscaglia M T, Viviani M, Mitoseriu L, Nanni P, Trefiletti V, Piaggio P, Gregora I, Ostapchuk T, Pokorný J, Petzelt J 2006 J. Eur. Ceram. Soc. 26 2889
Google Scholar
[53] Liu Y X, Thong H C, Zhao C, Liu Q, Xu X, Wang K, Li J F 2019 J. Mater. Chem. C 7 6914
Google Scholar
[54] Wang X, Deng X, Wen H, Li L 2006 Appl. Phys. Lett. 89 162902
Google Scholar
[55] Moetakef P, Nemati Z A 2008 Sens. Actuators. A: Phys. 141 463
Google Scholar
[56] Wu J, Wang Y 2014 Dalton. Trans. 43 12836
Google Scholar
[57] Yang W, Li P, Wu S, Li F, Shen B, Zhai J 2019 Adv. Electron. Mater. 5 1900570
Google Scholar
[58] Martirena H, Burfoot J 1974 Ferroelectrics 7 151
Google Scholar
[59] Maiwa H 2013 J. Ceram. Soc. Jpn. 121 655
Google Scholar
[60] Maiwa H 2014 Ferroelectrics 463 15
Google Scholar
[61] Li J F, Wang S, Wakabayashi K, Esashi M, Watanabe R 2000 J. Am. Ceram. Soc. 83 955
Google Scholar
[62] Maiwa H 2016 Ferroelectrics 491 71
Google Scholar
[63] Takahashi H, Numamoto Y, Tani J, Matsuta K, Qiu J, Tsurekawa S 2005 Jpn. J. Appl. Phys. 45 L30
[64] Sharma P K, Ounaies Z, Varadan V V, Varadan V K 2001 Smart Mater. Struct. 10 878
Google Scholar
[65] Bafandeh M R, Gharahkhani R, Abbasi M H, Saidi A, Lee J S, Han H S 2014 J. Electroceram. 33 128
Google Scholar
[66] Deng X, Wang X, Wen H, Kang A, Gui Z, Li L 2006 J. Am. Ceram. Soc. 89 1059
Google Scholar
[67] Luan W, Gao L, Kawaoka H, Sekino T, Niihara K 2004 Ceram. Int. 30 405
Google Scholar
[68] Wu Y J, Li J, Kimura R, Uekawa N, Kakegawa K 2005 J. Am. Ceram. Soc. 88 3327
Google Scholar
[69] Shen Z Y, Li J F, Wang K, Xu S, Jiang W, Deng Q 2010 J. Am. Ceram. Soc. 93 1378
Google Scholar
[70] Zhen Y, Li J F, Wang K, Yan Y, Yu L 2011 Mater. Sci. Eng. B 176 1110
Google Scholar
[71] Li J F, Wang K, Zhang B P, Zhang L M 2006 J. Am. Ceram. Soc. 89 706
Google Scholar
[72] M’Peko J C, Francis J S, Raj R 2014 J. Eur. Ceram. Soc. 34 3655
Google Scholar
[73] Su X, Jia Y, Han C, Hu Y, Fu Z, Liu K, Yu Y, Yan X, Wang Y 2019 Ceram. Int. 45 5168
Google Scholar
[74] Su X, Bai G, Jia Y, Wang Z, Wu W, Yan X, Ai T, Zhao P, Zhou L 2018 J. Eur. Ceram. Soc. 38 3489
Google Scholar
[75] Serrazina R, Dean J S, Reaney I M, Pereira L, Vilarinho P M, Senos A M O R 2019 J. Mater. Chem. C 7 14334
Google Scholar
[76] Lucuta P G, Constantinescu F, Barb D 1985 J. Am. Ceram. Soc. 68 533
Google Scholar
[77] Pookmanee P, Rujijanagul G, Ananta S, Heimann R B, Phanichphant S 2004 J. Eur. Ceram. Soc. 24 517
Google Scholar
[78] Du H, Tang F, Luo F, Zhu D, Qu S, Pei Z, Zhou W 2007 Mater. Res. Bull. 42 1594
Google Scholar
[79] Stojanovic B 2018 Magnetic, Ferroelectric, and Multiferroic Metal Oxides (Elsevier)
[80] Rubio Marcos F, Marchet P, Merle Méjean T, Fernandez J 2010 Mater. Chem. Phys. 123 91
Google Scholar
[81] Popovič A, Bencze L, Koruza J, Malič B 2015 RSC Advances 5 76249
Google Scholar
[82] Lin S, Lv T, Jin C, Wang X 2006 Phys. Rev. B 74 134115
Google Scholar
[83] Buessem W R, Cross L E, Goswami A K 1966 J. Am. Ceram. Soc. 49 33
Google Scholar
[84] Curecheriu L, Buscaglia M T, Buscaglia V, Zhao Z, Mitoseriu L 2010 Appl. Phys. Lett. 97 242909
Google Scholar
[85] Deng X, Wang X, Chen L, Wen H, Li L 2006 Appl. Phys. Lett. 89 152901
Google Scholar
[86] Hoshina T, Takizawa K, Li J, Kasama T, Kakemoto H, Tsurumi T 2008 Jpn. J. Appl. Phys. 47 7607
Google Scholar
[87] Wada S, Takeda K, Muraishi T, Kakemoto H, Tsurumi T, Kimura T 2007 Jpn. J. Appl. Phys. 46 7039
Google Scholar
[88] Shen Z Y, Li J F 2010 J. Ceram. Soc. Jpn. 118 940
Google Scholar
[89] Aizawa T, Fujii I, Ueno S, Wada S 2018 J. Ceram. Soc. Jpn. 126 311
Google Scholar
[90] Karaki T, Yan K, Adachi M 2007 Jpn. J. Appl. Phys. 46 7035
Google Scholar
[91] Karaki T, Yan K, Adachi M 2008 Appl. Phys. Express 1 111402
Google Scholar
[92] Ma N, Zhang B P, Yang W G, Guo D 2012 J. Eur. Ceram. Soc. 32 1059
Google Scholar
[93] Shao S, Zhang J, Zhang Z, Zheng P, Zhao M, Li J, Wang C 2008 J. Phys. D: Appl. Phys. 41 125408
Google Scholar
[94] Zhao Z, Buscaglia V, Viviani M, Buscaglia M T, Mitoseriu L, Testino A, Nygren M, Johnsson M, Nanni P 2004 Phys. Rev. B 70 024107
Google Scholar
[95] Ghosh D, Sakata A, Carter J, Thomas P A, Han H, Nino J C, Jones J L 2014 Adv. Funct. Mater. 24 884
Google Scholar
[96] Arlt G, Sasko P 1980 J. Appl. Phys. 51 4956
Google Scholar
[97] Arlt G 1990 J. Mater. Sci. 25 2655
Google Scholar
[98] Hoshina T 2013 J. Ceram. Soc. Jpn. 121 156
Google Scholar
[99] Tan Y, Zhang J, Wang C, Viola G, Yan H 2014 Physica Status Solidi A 212 433
Google Scholar
[100] Jo W, Dittmer R, Acosta M, Zang J, Groh C, Sapper E, Wang K, Rödel J 2012 J. Electroceram. 29 71
Google Scholar
[101] Frey M H, Xu Z, Han P, Payne D A 1998 Ferroelectrics 206 337
Google Scholar
[102] Polotai A V, Ragulya A V, Randall C A 2003 Ferroelectrics 288 93
Google Scholar
[103] Deng X, Wang X, Wen H, Chen L, Chen L, Li L 2006 Appl. Phys. Lett. 88 252905
Google Scholar
[104] Karaki T, Yan K, Miyamoto T, Adachi M 2007 Jpn. J. Appl. Phys. 46 L97
Google Scholar
[105] Hoshina T, Kigoshi Y, Hatta S, Takeda H, Tsurumi T 2009 Jpn. J. Appl. Phys. 48 09KC01
[106] Ding S H, Song T X, Yang X J, Luo G H 2010 Ferroelectrics 402 55
Google Scholar
[107] Curecheriu L, Balmus S B, Buscaglia M T, Buscaglia V, Ianculescu A, Mitoseriu L 2012 J. Am. Ceram. Soc. 95 3912
Google Scholar
[108] Guo F Q, Zhang B H, Fan Z X, Peng X, Yang Q, Dong Y X, Chen R R 2016 J. Mater. ScI: Mater. Elec 27 5967
Google Scholar
[109] Shi Y, Pu Y, Cui Y, Luo Y 2017 J. Mater. ScI: Mater. Elec 28 13229
Google Scholar
[110] Takahashi H, Numamoto Y, Tani J, Tsurekawa S 2006 Jpn. J. Appl. Phys. 45 7405
Google Scholar
[111] Takahashi H, Numamoto Y, Tani J, Tsurekawa S 2007 Jpn. J. Appl. Phys. 46 7044
Google Scholar
[112] Huan Y, Wang X, Fang J, Li L 2013 J. Am. Ceram. Soc. 96 3369
Google Scholar
[113] Mudinepalli V R, Feng L, Lin W C, Murty B S 2015 J. Adv. Ceram. 4 46
Google Scholar
[114] Dai B, Hu X, Yin R, Bai W, Wen F, Deng J, Zheng L, Du J, Zheng P, Qin H 2017 J. Mater. ScI: Mater. Elec 28 7928
Google Scholar
[115] Dai B, Zheng P, Bai W, Wen F, Li L, Wu W, Ying Z, Zheng L 2018 J. Eur. Ceram. Soc. 38 4212
Google Scholar
[116] Li X, Wang J 2016 Smart Mater. Struct. 26 015013
Google Scholar
[117] Khanal G P, Kim S, Kim M, Fujii I, Ueno S, Wada S 2018 J. Ceram. Soc. Jpn. 126 536
Google Scholar
[118] McNeal M P, Jang S J, Newnham R E 1998 J. Appl. Phys. 83 3288
Google Scholar
[119] Hao J, Bai W, Li W, Zhai J 2012 J. Am. Ceram. Soc. 95 1998
Google Scholar
[120] Tan Y, Viola G, Koval V, Yu C, Mahajan A, Zhang J, Zhang H, Zhou X, Tarakina N V, Yan H 2019 J. Eur. Ceram. Soc. 39 2064
Google Scholar
[121] Sapkota P, Ueno S, Fujii I, Khanal G P, Kim S, Wada S 2019 Jpn. J. Appl. Phys. 58 SLLC05
Google Scholar
[122] Liu W, Ren X 2009 Phys. Rev. Lett. 103 257602
Google Scholar
[123] Zhao C, Wu H, Li F, Cai Y, Zhang Y, Song D, Wu J, Lyu X, Yin J, Xiao D, Zhu J, Pennycook S J 2018 J. Am. Chem. Soc. 140 15252
Google Scholar
[124] Yao Y, Zhou C, Lv D, Wang D, Wu H, Yang Y, Ren X 2012 EPL (Europhysics Letters) 98 27008
Google Scholar
[125] Zhou P F, Zhang B P, Zhao L, Zhao X K, Zhu L F, Cheng L Q, Li J F 2013 Appl. Phys. Lett. 103 172904
Google Scholar
[126] Zhu L F, Zhang B P, Zhao X K, Zhao L, Zhou P F, Li J F 2012 J. Am. Ceram. Soc. 96 241
Google Scholar
[127] Zhao L, Zhang B P, Zhou P F, Zhu L F, Wang N 2016 Ceram. Int. 42 1086
Google Scholar
[128] Zhu L F, Zhang B P, Zhao L, Li S, Zhou Y, Shi X C, Wang N 2016 J. Eur. Ceram. Soc. 36 1017
Google Scholar
[129] Zhang L, Zhang M, Wang L, Zhou C, Zhang Z, Yao Y, Zhang L, Xue D, Lou X, Ren X 2014 Appl. Phys. Lett. 105 162908
Google Scholar
[130] Brajesh K, Tanwar K, Abebe M, Ranjan R 2015 Phys. Rev. B 92 224112
Google Scholar
[131] Weston T, Webster A, McNamara V 1969 J. Am. Ceram. Soc. 52 253
Google Scholar
[132] Okazaki K, Nagata K 1973 J. Am. Ceram. Soc. 56 82
Google Scholar
[133] Kawamura Y, Matsumoto N, Kamataki H, Mukae K 1989 Jpn. J. Appl. Phys. 28 77
[134] Ichinose N, Kimura M 1991 Jpn. J. Appl. Phys. 30 2220
Google Scholar
[135] Kim S, Lee G, Shrout T R, Venkataramani S 1991 J. Mater. Sci. 26 4411
Google Scholar
[136] Zhang Z, Raj R 1995 J. Am. Ceram. Soc. 78 3363
Google Scholar
[137] Roy Chowdhury P, Deshpande S B 1987 J. Mater. Sci. 22 2209
Google Scholar
[138] Qiu C, Wang B, Zhang N, Zhang S, Liu J, Walker D, Wang Y, Tian H, Shrout T R, Xu Z 2020 Nature 577 350
Google Scholar
[139] Okazaki K, Sakata K 1962 Electrotechn. J. Jpn. 7 13
[140] Yang A, Wang C A, Guo R, Huang Y, Nan C W 2010 Ceram. Int. 36 549
Google Scholar
[141] Liu W, Xu J, Lv R, Wang Y, Xu H, Yang J 2014 Ceram. Int. 40 2005
Google Scholar
[142] Genenko Y A, Glaum J, Hoffmann M J, Albe K 2015 Mater. Sci. Eng., B 192 52
Google Scholar
[143] Eitel R, Shrout T R, Randall C A 2006 J. Appl. Phys. 99 124110
Google Scholar
[144] Hoffmann M, Hammer M, Endriss A, Lupascu D 2001 Acta Mater. 49 1301
Google Scholar
[145] Damjanovic D, Demartin M 1997 J. Phys.: Condens. Matter 9 4943
Google Scholar
[146] Kittel C 1946 Phys. Rev 70 965
Google Scholar
[147] Cao W, Randall C A 1996 J. Phys. Chem. Solids 57 1499
Google Scholar
[148] Marincel D M, Zhang H, Kumar A, Jesse S, Kalinin S V, Rainforth W, Reaney I M, Randall C A, Trolier-McKinstry S 2014 Adv. Funct. Mater. 24 1409
Google Scholar
[149] Wicks S, Anbusathiah V, Nagarajan V 2007 Nanotechnology 18 465502
Google Scholar
[150] Schultheiß J, Checchia S, Uršič H, Frömling T, Daniels J, Malič B, Rojac T, Koruza J 2020 J. Eur. Ceram. Soc. 40 3965
Google Scholar
[151] Bell A, Moulson A, Cross L 1984 Ferroelectrics 54 147
Google Scholar
[152] Zhukov S, Kungl H, Genenko Y A, von Seggern H 2014 J. Appl. Phys. 115 014103
Google Scholar
[153] Huey B D, Nath Premnath R, Lee S, Polomoff N A 2012 J. Am. Ceram. Soc. 95 1147
Google Scholar
[154] Damjanovic D, Demartin M, Shulman H, Testorf M, Setter N 1996 Sens. Actuators. A: Phys. 53 353
Google Scholar
[155] Härdtl K, Rau H 1969 Solid State Commun. 7 41
Google Scholar
[156] Babushkin O, Lindbäck T, Luc J C, Leblais J Y 1996 J. Eur. Ceram. Soc. 16 1293
Google Scholar
[157] Lal R, Gokhale N, Krishnan R, Ramakrishnan P 1989 J. Mater. Sci. 24 2911
Google Scholar
[158] Zhang M H, Liu Y X, Wang K, Koruza J, Schultheiß J 2020 Phys. Rev. Mater. 4 064407
Google Scholar
[159] Hreščak J, Dražić G, Deluca M, Arčon I, Kodre A, Dapiaggi M, Rojac T, Malič B, Bencan A 2017 J. Eur. Ceram. Soc. 37 2073
Google Scholar
[160] Yang Z, Du H, Qu S, Hou Y, Ma H, Wang J, Wang J, Wei X, Xu Z 2016 J. Mater. Chem. A 4 13778
Google Scholar
[161] Koruza J, Rožič B, Cordoyiannis G, Malič B, Kutnjak Z 2015 Appl. Phys. Lett. 106 202905
Google Scholar
[162] Kosec M, Bobnar V, Hrovat M, Bernard J, Malic B, Holc J 2004 J. Mater. Res. 19 1849
Google Scholar
[163] Wang R, Xie R, Sekiya T, Shimojo Y 2004 Mater. Res. Bull. 39 1709
Google Scholar
[164] Acker J, Kungl H, Hoffmann M J 2010 J. Am. Ceram. Soc. 93 1270
Google Scholar
[165] Eriksson M, Yan H, Viola G, Ning H, Gruner D, Nygren M, Reece M J, Shen Z 2011 J. Am. Ceram. Soc. 94 3391
Google Scholar
[166] Kakimoto K i, Kaneko R, Kagomiya I 2012 Jpn. J. Appl. Phys. 51 09LD06
Google Scholar
[167] Haertling G 1967 J. Am. Ceram. Soc. 50 329
Google Scholar
[168] Fang J, Wang X, Tian Z, Zhong C, Li L, Zuo R 2010 J. Am. Ceram. Soc. 93 3552
Google Scholar
[169] Qin Y, Zhang J, Yao W, Wang C, Zhang S 2015 J. Am. Ceram. Soc. 98 1027
Google Scholar
[170] Esin A, Alikin D, Turygin A, Abramov A, Hreščak J, Walker J, Rojac T, Bencan A, Malic B, Kholkin A 2017 J. Appl. Phys. 121 074101
Google Scholar
[171] Wang K, Malič B, Wu J 2018 MRS Bull. 43 607
Google Scholar
[172] Cen Z, Yu Y, Zhao P, Chen L, Zhu C, Li L, Wang X 2019 J. Mater. Chem. C 7 1379
Google Scholar
[173] Li E, Kakemoto H, Hoshina T, Tsurumi T 2008 Jpn. J. Appl. Phys. 47 7702
Google Scholar
[174] Hagh N M, Kerman K, Jadidian B, Safari A 2009 J. Eur. Ceram. Soc. 29 2325
Google Scholar
[175] Han H S, Koruza J, Patterson E A, Schultheiß J, Erdem E, Jo W, Lee J S, Rödel J 2017 J. Eur. Ceram. Soc. 37 2083
Google Scholar
[176] Zhen Y, Li J F 2007 J. Am. Ceram. Soc. 90 3496
Google Scholar
[177] Fisher J G, Kang S J L 2009 J. Eur. Ceram. Soc. 29 2581
Google Scholar
[178] Thong H C, Xu Z, Zhao C, Lou L Y, Chen S, Zuo S Q, Li J F, Wang K 2019 J. Am. Ceram. Soc. 102 836
Google Scholar
[179] Thong H C, Zhao C, Zhu Z X, Chen X, Li J F, Wang K 2019 Acta Mater. 166 551
Google Scholar
[180] Pop-Ghe P, Stock N, Quandt E 2019 Sci. Rep. 9 1
Google Scholar
[181] Cho C R, Grishin A 2000 J. Appl. Phys. 87 4439
Google Scholar
[182] Paterson A R, Nagata H, Tan X, Daniels J E, Hinterstein M, Ranjan R, Groszewicz P B, Jo W, Jones J L 2018 MRS Bull. 43 600
Google Scholar
[183] Takenaka T, Nagata H, Hiruma Y 2008 Jpn. J. Appl. Phys. 47 3787
Google Scholar
[184] Nagata H, Takenaka T 2001 J. Eur. Ceram. Soc. 21 1299
Google Scholar
[185] Yi J Y, Lee J K, Hong K S 2002 J. Am. Ceram. Soc. 85 3004
[186] Naderer M, Kainz T, Schütz D, Reichmann K 2014 J. Eur. Ceram. Soc. 34 663
Google Scholar
[187] Qiao X S, Chen X M, Lian H L, Zhou J P, Liu P 2016 J. Eur. Ceram. Soc. 36 3995
Google Scholar
[188] Seo I T, Steiner S, Frömling T 2017 J. Eur. Ceram. Soc. 37 1429
Google Scholar
[189] Zhang Y R, Li J F, Zhang B P 2008 J. Am. Ceram. Soc. 91 2716
Google Scholar
[190] Cernea M, Galassi C, Vasile B S, Capiani C, Berbecaru C, Pintilie I, Pintilie L 2012 J. Eur. Ceram. Soc. 32 2389
Google Scholar
[191] Taghaddos E, Charalambous H, Tsakalakos T, Safari A 2019 J. Eur. Ceram. Soc. 39 2882
Google Scholar
[192] Bai W, Chen D, Zheng P, Xi J, Zhou Y, Shen B, Zhai J, Ji Z 2017 J. Eur. Ceram. Soc. 37 2591
Google Scholar
[193] Si Y, Li Y, Li L, Li H, Zhao Z, Dai Y 2020 J. Am. Ceram. Soc. 103 1765
Google Scholar
[194] Veera Gajendra Babu M, Bagyalakshmi B, Pathinettam Padiyan D, Ren Y, Sundarakannan B 2017 Scripta Mater. 141 67
Google Scholar
[195] Koruza J, Groszewicz P, Breitzke H, Buntkowsky G, Rojac T, Malič B 2017 Acta Mater. 126 77
Google Scholar
[196] Liu X, Xue S, Wang F, Zhai J, Shen B 2019 Acta Mater. 164 12
Google Scholar
[197] Li H L, Liu Q, Zhou J J, Wang K, Li J F, Liu H, Fang J Z 2016 J. Eur. Ceram. Soc. 36 2849
Google Scholar
[198] Khatua D K, Mehrotra T, Mishra A, Majumdar B, Senyshyn A, Ranjan R 2017 Acta Mater. 134 177
Google Scholar
[199] Muthuramalingam M, Ruth D J, Babu M V G, Ponpandian N, Mangalaraj D, Sundarakannan B 2016 Scripta Mater. 112 58
Google Scholar
-
图 3 BT压电陶瓷的晶粒形貌及晶粒尺寸对压电性能的影响 (a) BT陶瓷中不同尺寸(5 nm—100 μm)晶粒的扫描电子显微镜照片[27,30,52,54,63,93-95]; (b) 典型BT陶瓷中ε与d33[98]; (c) 双向极化应变曲线; (d) 电滞回线; (e) 单向极化应变曲线随晶粒尺寸的变化[99]
Fig. 3. The grain size effect on BT ceramics: (a) A wide range of grain size varying from 5 nm to 100 μm can be obtained in BT ceramics[27,30,52,54,63,93-95]; (b) ε and d33[98]; (c) bipolar strain curve; (d) hysteresis loop; (e) unipolar strain loop measured as a function of grain size[99].
图 4 BT陶瓷中(a)畴尺寸、(b)介电常数ε及(c)压电常数d33随晶粒尺寸的变化趋势; (d)高能X射线衍射图谱显示不同晶粒尺寸的BT陶瓷中平均晶面间距及(002)和(200)衍射峰强度在电场激励下的变化[95]. “nano”, “micro”分别表示纳米级和微米级粒径的BT陶瓷粉体; “MS”, “HP”, “SPS”, “CS”和“TSS”分别表示微波烧结、热压烧结、等离子放电烧结、普通烧结及两步法烧结方法
Fig. 4. (a) Ferroelectric domain size, (b) ε, and (c) d33 of BT ceramics summarized as a function of grain size; (d) extrinsic contribution was found maximized when the grain size of BT ceramic is around 2 μm in a high-energy XRD measurement[95]. Note: “nano” and “micro” implies that the raw materials are nano-sized and micro-sized BaTiO3 powders. “MS”, “HP”, “SPS”, “CS”, and “TSS” represents the microwave sintering, hot-pressing, spark plasma sintering, conventional sintering and two-step sintering, respectively.
图 5 采用不同方法制得的BT陶瓷和带有不同相结构的BT陶瓷中, 晶粒尺寸效应呈现显著的不同 (a) 不同陶瓷粉体粒径和烧结方法制备BT陶瓷中d33随晶粒尺寸的变化趋势[28]; (b) Ba(Ti0.96Sn0.04)O3 (BTS)和(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 (BCZT)陶瓷中d33与
${d}_{33}^{{*}}$ 随晶粒尺寸的变化趋势[119,120]Fig. 5. Grain size effect can be different among BT ceramics with virous phase structure and by different preparation method: (a) Grain size dependence of d33 of BT ceramics prepared by using different sintering method[28]; (b) d33 and
$ {d}_{33}^{{*}} $ of Ba(Ti0.96Sn0.04)O3, (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 ceramics with different average grain sizes[119,120].图 6 (a) 通过控制烧结温度获得晶粒尺寸不同的PZT陶瓷[141]; (b) d33和d31随烧结温度的变化[141]; (c) 晶粒尺寸效应的“空间电荷模型”[132]
Fig. 6. (a) Grain size evolution in PZT ceramics as a function of sintering temperature[141]; (b) piezoelectric coefficients of PZT ceramics measured as a function of sintering temperature[141]; (c) illustration of the “space-charge model” [132].
图 7 (a) PZT陶瓷的d33, d31, dh和Pr与晶粒尺寸的关系[25]; (b) PZT陶瓷的晶体四方性c/a与晶粒尺寸的关系[25]; (c) 晶粒尺寸为3.9 μm和10.4 μm的PZT陶瓷的压电力显微镜(PFM)图[150]; (d) 在细晶粒陶瓷的晶界上观察到比较强烈的局部矫顽场[150]; (e) 不同晶粒尺寸PZT陶瓷样品经过2000次电循环去老化后测量的电致应变曲线(左), 双极化应变Sbip和Pr与晶粒尺寸的关系(右)[150]
Fig. 7. (a) d33, d31, dh, and Pr of PZT ceramics measured as a function of grain size[25]; (b) c/a ratio measured as a function of grain size[25]; (c) PFM amplitude images of PZT samples with average grain sizes of 3.9 μm and 10.4 μm[150]; (d) stronger local coercive voltages can be obtained at the grain boundary in the fine grain[150]; (e) bipolar strain and Pr of PZT ceramics measured as a function of grain size after de-aging[150].
图 8 (a) KNN-x Sr陶瓷中铁电畴尺寸随着晶粒尺寸的变化; 在总体畴壁密度提升的同时, 导电畴壁的数量也大幅增加[170]; (b) KNN基陶瓷的铁电与压电性能随着晶粒尺寸的变化[171]
Fig. 8. (a) Variation of domain size as a function of grain size in KNN-x Sr ceramics; an increased amount of conductive domain wall is observed as the grain size decreases[170]; (b) evolution of ferroelectric and piezoelectric properties as a function of grain size in KNN-based ceramics[171].
图 9 (a) KNN陶瓷在高温烧结过程中产生液相导致的异常晶粒长大[176]; (b) 通过改变烧结气氛可以抑制陶瓷中的异常晶粒长大[177]; (c) 在KNN基陶瓷预烧粉末中观察到的异常晶粒长大[178]
Fig. 9. (a) Abnormal grain growth in sintered KNN ceramics caused by the formation of the liquid phase at high temperature[176]; (b) abnormal grain growth in sintered ceramics can be suppressed by controlling sintering atmosphere[177]; (c) irregular grain growth observed in calcined KNN-based ceramic powder[178].
图 10 (a) 利用闪速烧结方式制备细晶粒BNT基陶瓷[191]; (b) BNT基陶瓷中晶粒尺寸效应的物理模型[196]; (c) BNT基陶瓷的压电性能随晶粒尺寸的变化[197]
Fig. 10. (a) Fine-grained BNT-based ceramics prepared by flash sintering[191]; (b) a qualitative model of the grain size effect in BNT-based ceramics[196]; (c) variation of piezoelectric properties of BNT-based ceramics as a function of grain size[197].
表 1 不同粉体制备方法与最细粉体粒径
Table 1. Ceramic powders prepared by using different approaches.
表 2 不同烧结方法与晶粒尺寸
Table 2. Grain size variation among BT, PZT, and KNN ceramics prepared by using different sintering techniques.
烧结方法 晶粒尺寸/μm BT PZT KNN 普通烧结 0.5—100[51,52] 1—10[25] 0.5—4[53] 两步法烧结 0.005—8.6[27,54] 1.6—6.4[55] 1.6—3.8[56,57] 热压烧结 0.3—1.2[23] 2—5[58] ~0.31[57] 热等静压烧结 0.32—47.3[59,60] 2—4[61] ~0.34[62] 微波烧结 ~3.4[63] ~2[64] < 1[65] 等离子放电烧结 0.02—1.2[52,66,67] 0.3—0.5[68] 0.2—1[69-71] 闪速烧结 0.3—0.4[72] #0.168—1.4 (AC)[73]
0.269—4 (DC)[74]* < 0.5&4[75] 注: #AC指在交流电场下的闪速烧结, DC指在直流电场下的闪速烧结;
*晶粒尺寸呈现双峰分布. -
[1] Jaffe B, Cook Jr W R, Jaffe H 1971 Piezoelectric Ceramics (Elsevier)
[2] Röedel J, Li J F 2018 MRS Bull. 43 576
Google Scholar
[3] Thong H C, Zhao C, Zhou Z, Wu C F, Liu Y X, Du Z Z, Li J F, Gong W, Wang K 2019 Mater. Today 29 37
Google Scholar
[4] Koruza J, Bell A J, Frömling T, Webber K G, Wang K, Rödel J 2018 J. Materiomics 4 13
Google Scholar
[5] Wul B 1946 Nature 157 808
[6] Roberts S 1947 Phys. Rev. 71 890
Google Scholar
[7] Haertling G H 1999 J. Am. Ceram. Soc. 82 797
Google Scholar
[8] Jaffe B, Roth R, Marzullo S 1955 J. Res. Natl. Bur. Stand. 55 239
Google Scholar
[9] Rödel J, Webber K G, Dittmer R, Jo W, Kimura M, Damj anovic D 2015 J. Eur. Ceram. Soc. 35 1659
Google Scholar
[10] EU-Directive 2002/95/EC, European Commision, (2003), https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3 A32002 L0095
[11] Wu J, Xiao D, Zhu J 2015 Chem. Rev. 115 2559
Google Scholar
[12] Zheng T, Wu J, Xiao D, Zhu J 2018 Prog. Mater Sci. 98 552
Google Scholar
[13] Zhang Y, Li J F 2019 J. Mater. Chem. C 7 4284
Google Scholar
[14] Liu Q, Zhang Y, Gao J, Zhou Z, Wang H, Wang K, Zhang X, Li L, Li J F 2018 Energy. Environ. Sci. 11 3531
Google Scholar
[15] Liu Q, Zhang Y, Gao J, Zhou Z, Yang D, Lee K Y, Studer A, Hinterstein M, Wang K, Zhang X 2020 Natl. Sci. Rev. 7 355
Google Scholar
[16] Liu X, Tan X 2016 Adv. Mater. 28 574
Google Scholar
[17] Lee H J, Ural S O, Chen L, Uchino K, Zhang S J 2012 J. Am. Ceram. Soc. 95 3383
Google Scholar
[18] Hao J, Li W, Zhai J, Chen H 2019 Mater. Sci. Eng. R. Rep. 135 1
Google Scholar
[19] Jillek W, Yung W 2005 Int. J. Adv. Manuf. Technol. 25 350
Google Scholar
[20] Kniekamp H, Heywang W 1954 Z. Angew. Phys 6 385
[21] Martirena H, Burfoot J 1974 J. Phys. C: Solid. State. Phys 7 3182
Google Scholar
[22] Kinoshita K, Yamaji A 1976 J. Appl. Phys. 47 371
Google Scholar
[23] Arlt G, Hennings D, De With G 1985 J. Appl. Phys. 58 1619
Google Scholar
[24] Ghayour H, Abdellahi M 2016 Powder Technol. 292 84
Google Scholar
[25] Randall C A, Kim N, Kucera J P, Cao W, Shrout T R 1998 J. Am. Ceram. Soc. 81 677
Google Scholar
[26] Pramanik R, Sahukar M K, Mohan Y, Praveenkumar B, Sangawar S R, Arockiarajan A 2019 Ceram. Int. 45 5731
Google Scholar
[27] Huan Y, Wang X, Fang J, Li L 2014 J. Eur. Ceram. Soc. 34 1445
Google Scholar
[28] Tan Y, Zhang J, Wu Y, Wang C, Koval V, Shi B, Ye H, McKinnon R, Viola G, Yan H 2015 Sci. Rep. 5 9953
Google Scholar
[29] Wang J, Zheng P, Yin R, Zheng L, Du J, Zheng L, Deng J, Song K, Qin H 2015 Ceram. Int. 41 14165
Google Scholar
[30] Zhang J L, Ji P F, Wu Y Q, Zhao X, Tan Y Q, Wang C L 2014 Appl. Phys. Lett. 104 222909
Google Scholar
[31] Men T L, Yao F Z, Zhu Z X, Wang K, Li J F 2016 J. Adv. Dielectr. 6 1650013
Google Scholar
[32] Rahaman M N 2003 Ceramic Processing and Sintering (CRC Press)
[33] Malič B, Koruza J, Hreščak J, Bernard J, Wang K, Fisher J G, Benčan A 2015 Materials 8 8117
Google Scholar
[34] Watanabe A, Fukui T, Nogi K, Kizaki Y, Noguchi Y, Miyayama M 2006 J. Ceram. Soc. Jpn. 114 97
Google Scholar
[35] Hsiang H I, Yen F S 1996 J. Am. Ceram. Soc. 79 1053
Google Scholar
[36] Kakimoto K i, Shinkai Y 2011 Jpn. J. Appl. Phys. 50 09NC13
Google Scholar
[37] Nath A, Jiten C, Singh K C 2010 Physica. B Condens. Matter. 405 430
Google Scholar
[38] 郭惠芬, 张兴堂, 刘兵, 李蕴才, 黄亚彬, 杜祖亮 2004 物理化学学报 20 113
Google Scholar
Guo H F, Zhang X T, Liu B, Li Y C, Huang Y B, Du Z L 2004 Acta Physico-chimica Sinica 20 113
Google Scholar
[39] Lu S W, Lee B I, Wang Z L, Samuels W D 2000 J. Cryst. Growth 219 269
Google Scholar
[40] Tokita K, Sato S 2006 Key Eng. Mater 301 219
[41] Guo L, Luo H, Gao J, Guo L, Yang J 2006 Mater. Lett. 60 3011
Google Scholar
[42] Chen D, Jiao X 2000 J. Am. Ceram. Soc. 83 2637
Google Scholar
[43] Mazdiyasni K S, Dolloff R, Smith J 1969 J. Am. Ceram. Soc. 52 523
Google Scholar
[44] Shiratori Y, Magrez A, Pithan C 2004 Chem. Phys. Lett. 391 288
Google Scholar
[45] Pithan C, Shiratori Y, Waser R, Dornseiffer J, Haegel F H 2006 J. Am. Ceram. Soc. 89 2908
Google Scholar
[46] Wei X, Xu G, Ren Z, Wang Y, Shen G, Han G 2008 J. Am. Ceram. Soc. 91 315
Google Scholar
[47] Viviani M, Lemaitre J, Buscaglia M, Nanni P 2000 J. Eur. Ceram. Soc. 20 315
Google Scholar
[48] Wada S, Chikamori H, Noma T, Suzuki T 2000 J. Mater. Sci. 35 4857
Google Scholar
[49] Bansal V, Poddar P, Ahmad A, Sastry M 2006 J. Am. Chem. Soc. 128 11958
Google Scholar
[50] Nuraje N, Su K, Haboosheh A, Samson J, Manning E P, Yang N l, Matsui H 2006 Adv. Mater. 18 807
Google Scholar
[51] Zheng P, Zhang J L, Tan Y Q, Wang C L 2012 Acta Mater. 60 5022
Google Scholar
[52] Buscaglia V, Buscaglia M T, Viviani M, Mitoseriu L, Nanni P, Trefiletti V, Piaggio P, Gregora I, Ostapchuk T, Pokorný J, Petzelt J 2006 J. Eur. Ceram. Soc. 26 2889
Google Scholar
[53] Liu Y X, Thong H C, Zhao C, Liu Q, Xu X, Wang K, Li J F 2019 J. Mater. Chem. C 7 6914
Google Scholar
[54] Wang X, Deng X, Wen H, Li L 2006 Appl. Phys. Lett. 89 162902
Google Scholar
[55] Moetakef P, Nemati Z A 2008 Sens. Actuators. A: Phys. 141 463
Google Scholar
[56] Wu J, Wang Y 2014 Dalton. Trans. 43 12836
Google Scholar
[57] Yang W, Li P, Wu S, Li F, Shen B, Zhai J 2019 Adv. Electron. Mater. 5 1900570
Google Scholar
[58] Martirena H, Burfoot J 1974 Ferroelectrics 7 151
Google Scholar
[59] Maiwa H 2013 J. Ceram. Soc. Jpn. 121 655
Google Scholar
[60] Maiwa H 2014 Ferroelectrics 463 15
Google Scholar
[61] Li J F, Wang S, Wakabayashi K, Esashi M, Watanabe R 2000 J. Am. Ceram. Soc. 83 955
Google Scholar
[62] Maiwa H 2016 Ferroelectrics 491 71
Google Scholar
[63] Takahashi H, Numamoto Y, Tani J, Matsuta K, Qiu J, Tsurekawa S 2005 Jpn. J. Appl. Phys. 45 L30
[64] Sharma P K, Ounaies Z, Varadan V V, Varadan V K 2001 Smart Mater. Struct. 10 878
Google Scholar
[65] Bafandeh M R, Gharahkhani R, Abbasi M H, Saidi A, Lee J S, Han H S 2014 J. Electroceram. 33 128
Google Scholar
[66] Deng X, Wang X, Wen H, Kang A, Gui Z, Li L 2006 J. Am. Ceram. Soc. 89 1059
Google Scholar
[67] Luan W, Gao L, Kawaoka H, Sekino T, Niihara K 2004 Ceram. Int. 30 405
Google Scholar
[68] Wu Y J, Li J, Kimura R, Uekawa N, Kakegawa K 2005 J. Am. Ceram. Soc. 88 3327
Google Scholar
[69] Shen Z Y, Li J F, Wang K, Xu S, Jiang W, Deng Q 2010 J. Am. Ceram. Soc. 93 1378
Google Scholar
[70] Zhen Y, Li J F, Wang K, Yan Y, Yu L 2011 Mater. Sci. Eng. B 176 1110
Google Scholar
[71] Li J F, Wang K, Zhang B P, Zhang L M 2006 J. Am. Ceram. Soc. 89 706
Google Scholar
[72] M’Peko J C, Francis J S, Raj R 2014 J. Eur. Ceram. Soc. 34 3655
Google Scholar
[73] Su X, Jia Y, Han C, Hu Y, Fu Z, Liu K, Yu Y, Yan X, Wang Y 2019 Ceram. Int. 45 5168
Google Scholar
[74] Su X, Bai G, Jia Y, Wang Z, Wu W, Yan X, Ai T, Zhao P, Zhou L 2018 J. Eur. Ceram. Soc. 38 3489
Google Scholar
[75] Serrazina R, Dean J S, Reaney I M, Pereira L, Vilarinho P M, Senos A M O R 2019 J. Mater. Chem. C 7 14334
Google Scholar
[76] Lucuta P G, Constantinescu F, Barb D 1985 J. Am. Ceram. Soc. 68 533
Google Scholar
[77] Pookmanee P, Rujijanagul G, Ananta S, Heimann R B, Phanichphant S 2004 J. Eur. Ceram. Soc. 24 517
Google Scholar
[78] Du H, Tang F, Luo F, Zhu D, Qu S, Pei Z, Zhou W 2007 Mater. Res. Bull. 42 1594
Google Scholar
[79] Stojanovic B 2018 Magnetic, Ferroelectric, and Multiferroic Metal Oxides (Elsevier)
[80] Rubio Marcos F, Marchet P, Merle Méjean T, Fernandez J 2010 Mater. Chem. Phys. 123 91
Google Scholar
[81] Popovič A, Bencze L, Koruza J, Malič B 2015 RSC Advances 5 76249
Google Scholar
[82] Lin S, Lv T, Jin C, Wang X 2006 Phys. Rev. B 74 134115
Google Scholar
[83] Buessem W R, Cross L E, Goswami A K 1966 J. Am. Ceram. Soc. 49 33
Google Scholar
[84] Curecheriu L, Buscaglia M T, Buscaglia V, Zhao Z, Mitoseriu L 2010 Appl. Phys. Lett. 97 242909
Google Scholar
[85] Deng X, Wang X, Chen L, Wen H, Li L 2006 Appl. Phys. Lett. 89 152901
Google Scholar
[86] Hoshina T, Takizawa K, Li J, Kasama T, Kakemoto H, Tsurumi T 2008 Jpn. J. Appl. Phys. 47 7607
Google Scholar
[87] Wada S, Takeda K, Muraishi T, Kakemoto H, Tsurumi T, Kimura T 2007 Jpn. J. Appl. Phys. 46 7039
Google Scholar
[88] Shen Z Y, Li J F 2010 J. Ceram. Soc. Jpn. 118 940
Google Scholar
[89] Aizawa T, Fujii I, Ueno S, Wada S 2018 J. Ceram. Soc. Jpn. 126 311
Google Scholar
[90] Karaki T, Yan K, Adachi M 2007 Jpn. J. Appl. Phys. 46 7035
Google Scholar
[91] Karaki T, Yan K, Adachi M 2008 Appl. Phys. Express 1 111402
Google Scholar
[92] Ma N, Zhang B P, Yang W G, Guo D 2012 J. Eur. Ceram. Soc. 32 1059
Google Scholar
[93] Shao S, Zhang J, Zhang Z, Zheng P, Zhao M, Li J, Wang C 2008 J. Phys. D: Appl. Phys. 41 125408
Google Scholar
[94] Zhao Z, Buscaglia V, Viviani M, Buscaglia M T, Mitoseriu L, Testino A, Nygren M, Johnsson M, Nanni P 2004 Phys. Rev. B 70 024107
Google Scholar
[95] Ghosh D, Sakata A, Carter J, Thomas P A, Han H, Nino J C, Jones J L 2014 Adv. Funct. Mater. 24 884
Google Scholar
[96] Arlt G, Sasko P 1980 J. Appl. Phys. 51 4956
Google Scholar
[97] Arlt G 1990 J. Mater. Sci. 25 2655
Google Scholar
[98] Hoshina T 2013 J. Ceram. Soc. Jpn. 121 156
Google Scholar
[99] Tan Y, Zhang J, Wang C, Viola G, Yan H 2014 Physica Status Solidi A 212 433
Google Scholar
[100] Jo W, Dittmer R, Acosta M, Zang J, Groh C, Sapper E, Wang K, Rödel J 2012 J. Electroceram. 29 71
Google Scholar
[101] Frey M H, Xu Z, Han P, Payne D A 1998 Ferroelectrics 206 337
Google Scholar
[102] Polotai A V, Ragulya A V, Randall C A 2003 Ferroelectrics 288 93
Google Scholar
[103] Deng X, Wang X, Wen H, Chen L, Chen L, Li L 2006 Appl. Phys. Lett. 88 252905
Google Scholar
[104] Karaki T, Yan K, Miyamoto T, Adachi M 2007 Jpn. J. Appl. Phys. 46 L97
Google Scholar
[105] Hoshina T, Kigoshi Y, Hatta S, Takeda H, Tsurumi T 2009 Jpn. J. Appl. Phys. 48 09KC01
[106] Ding S H, Song T X, Yang X J, Luo G H 2010 Ferroelectrics 402 55
Google Scholar
[107] Curecheriu L, Balmus S B, Buscaglia M T, Buscaglia V, Ianculescu A, Mitoseriu L 2012 J. Am. Ceram. Soc. 95 3912
Google Scholar
[108] Guo F Q, Zhang B H, Fan Z X, Peng X, Yang Q, Dong Y X, Chen R R 2016 J. Mater. ScI: Mater. Elec 27 5967
Google Scholar
[109] Shi Y, Pu Y, Cui Y, Luo Y 2017 J. Mater. ScI: Mater. Elec 28 13229
Google Scholar
[110] Takahashi H, Numamoto Y, Tani J, Tsurekawa S 2006 Jpn. J. Appl. Phys. 45 7405
Google Scholar
[111] Takahashi H, Numamoto Y, Tani J, Tsurekawa S 2007 Jpn. J. Appl. Phys. 46 7044
Google Scholar
[112] Huan Y, Wang X, Fang J, Li L 2013 J. Am. Ceram. Soc. 96 3369
Google Scholar
[113] Mudinepalli V R, Feng L, Lin W C, Murty B S 2015 J. Adv. Ceram. 4 46
Google Scholar
[114] Dai B, Hu X, Yin R, Bai W, Wen F, Deng J, Zheng L, Du J, Zheng P, Qin H 2017 J. Mater. ScI: Mater. Elec 28 7928
Google Scholar
[115] Dai B, Zheng P, Bai W, Wen F, Li L, Wu W, Ying Z, Zheng L 2018 J. Eur. Ceram. Soc. 38 4212
Google Scholar
[116] Li X, Wang J 2016 Smart Mater. Struct. 26 015013
Google Scholar
[117] Khanal G P, Kim S, Kim M, Fujii I, Ueno S, Wada S 2018 J. Ceram. Soc. Jpn. 126 536
Google Scholar
[118] McNeal M P, Jang S J, Newnham R E 1998 J. Appl. Phys. 83 3288
Google Scholar
[119] Hao J, Bai W, Li W, Zhai J 2012 J. Am. Ceram. Soc. 95 1998
Google Scholar
[120] Tan Y, Viola G, Koval V, Yu C, Mahajan A, Zhang J, Zhang H, Zhou X, Tarakina N V, Yan H 2019 J. Eur. Ceram. Soc. 39 2064
Google Scholar
[121] Sapkota P, Ueno S, Fujii I, Khanal G P, Kim S, Wada S 2019 Jpn. J. Appl. Phys. 58 SLLC05
Google Scholar
[122] Liu W, Ren X 2009 Phys. Rev. Lett. 103 257602
Google Scholar
[123] Zhao C, Wu H, Li F, Cai Y, Zhang Y, Song D, Wu J, Lyu X, Yin J, Xiao D, Zhu J, Pennycook S J 2018 J. Am. Chem. Soc. 140 15252
Google Scholar
[124] Yao Y, Zhou C, Lv D, Wang D, Wu H, Yang Y, Ren X 2012 EPL (Europhysics Letters) 98 27008
Google Scholar
[125] Zhou P F, Zhang B P, Zhao L, Zhao X K, Zhu L F, Cheng L Q, Li J F 2013 Appl. Phys. Lett. 103 172904
Google Scholar
[126] Zhu L F, Zhang B P, Zhao X K, Zhao L, Zhou P F, Li J F 2012 J. Am. Ceram. Soc. 96 241
Google Scholar
[127] Zhao L, Zhang B P, Zhou P F, Zhu L F, Wang N 2016 Ceram. Int. 42 1086
Google Scholar
[128] Zhu L F, Zhang B P, Zhao L, Li S, Zhou Y, Shi X C, Wang N 2016 J. Eur. Ceram. Soc. 36 1017
Google Scholar
[129] Zhang L, Zhang M, Wang L, Zhou C, Zhang Z, Yao Y, Zhang L, Xue D, Lou X, Ren X 2014 Appl. Phys. Lett. 105 162908
Google Scholar
[130] Brajesh K, Tanwar K, Abebe M, Ranjan R 2015 Phys. Rev. B 92 224112
Google Scholar
[131] Weston T, Webster A, McNamara V 1969 J. Am. Ceram. Soc. 52 253
Google Scholar
[132] Okazaki K, Nagata K 1973 J. Am. Ceram. Soc. 56 82
Google Scholar
[133] Kawamura Y, Matsumoto N, Kamataki H, Mukae K 1989 Jpn. J. Appl. Phys. 28 77
[134] Ichinose N, Kimura M 1991 Jpn. J. Appl. Phys. 30 2220
Google Scholar
[135] Kim S, Lee G, Shrout T R, Venkataramani S 1991 J. Mater. Sci. 26 4411
Google Scholar
[136] Zhang Z, Raj R 1995 J. Am. Ceram. Soc. 78 3363
Google Scholar
[137] Roy Chowdhury P, Deshpande S B 1987 J. Mater. Sci. 22 2209
Google Scholar
[138] Qiu C, Wang B, Zhang N, Zhang S, Liu J, Walker D, Wang Y, Tian H, Shrout T R, Xu Z 2020 Nature 577 350
Google Scholar
[139] Okazaki K, Sakata K 1962 Electrotechn. J. Jpn. 7 13
[140] Yang A, Wang C A, Guo R, Huang Y, Nan C W 2010 Ceram. Int. 36 549
Google Scholar
[141] Liu W, Xu J, Lv R, Wang Y, Xu H, Yang J 2014 Ceram. Int. 40 2005
Google Scholar
[142] Genenko Y A, Glaum J, Hoffmann M J, Albe K 2015 Mater. Sci. Eng., B 192 52
Google Scholar
[143] Eitel R, Shrout T R, Randall C A 2006 J. Appl. Phys. 99 124110
Google Scholar
[144] Hoffmann M, Hammer M, Endriss A, Lupascu D 2001 Acta Mater. 49 1301
Google Scholar
[145] Damjanovic D, Demartin M 1997 J. Phys.: Condens. Matter 9 4943
Google Scholar
[146] Kittel C 1946 Phys. Rev 70 965
Google Scholar
[147] Cao W, Randall C A 1996 J. Phys. Chem. Solids 57 1499
Google Scholar
[148] Marincel D M, Zhang H, Kumar A, Jesse S, Kalinin S V, Rainforth W, Reaney I M, Randall C A, Trolier-McKinstry S 2014 Adv. Funct. Mater. 24 1409
Google Scholar
[149] Wicks S, Anbusathiah V, Nagarajan V 2007 Nanotechnology 18 465502
Google Scholar
[150] Schultheiß J, Checchia S, Uršič H, Frömling T, Daniels J, Malič B, Rojac T, Koruza J 2020 J. Eur. Ceram. Soc. 40 3965
Google Scholar
[151] Bell A, Moulson A, Cross L 1984 Ferroelectrics 54 147
Google Scholar
[152] Zhukov S, Kungl H, Genenko Y A, von Seggern H 2014 J. Appl. Phys. 115 014103
Google Scholar
[153] Huey B D, Nath Premnath R, Lee S, Polomoff N A 2012 J. Am. Ceram. Soc. 95 1147
Google Scholar
[154] Damjanovic D, Demartin M, Shulman H, Testorf M, Setter N 1996 Sens. Actuators. A: Phys. 53 353
Google Scholar
[155] Härdtl K, Rau H 1969 Solid State Commun. 7 41
Google Scholar
[156] Babushkin O, Lindbäck T, Luc J C, Leblais J Y 1996 J. Eur. Ceram. Soc. 16 1293
Google Scholar
[157] Lal R, Gokhale N, Krishnan R, Ramakrishnan P 1989 J. Mater. Sci. 24 2911
Google Scholar
[158] Zhang M H, Liu Y X, Wang K, Koruza J, Schultheiß J 2020 Phys. Rev. Mater. 4 064407
Google Scholar
[159] Hreščak J, Dražić G, Deluca M, Arčon I, Kodre A, Dapiaggi M, Rojac T, Malič B, Bencan A 2017 J. Eur. Ceram. Soc. 37 2073
Google Scholar
[160] Yang Z, Du H, Qu S, Hou Y, Ma H, Wang J, Wang J, Wei X, Xu Z 2016 J. Mater. Chem. A 4 13778
Google Scholar
[161] Koruza J, Rožič B, Cordoyiannis G, Malič B, Kutnjak Z 2015 Appl. Phys. Lett. 106 202905
Google Scholar
[162] Kosec M, Bobnar V, Hrovat M, Bernard J, Malic B, Holc J 2004 J. Mater. Res. 19 1849
Google Scholar
[163] Wang R, Xie R, Sekiya T, Shimojo Y 2004 Mater. Res. Bull. 39 1709
Google Scholar
[164] Acker J, Kungl H, Hoffmann M J 2010 J. Am. Ceram. Soc. 93 1270
Google Scholar
[165] Eriksson M, Yan H, Viola G, Ning H, Gruner D, Nygren M, Reece M J, Shen Z 2011 J. Am. Ceram. Soc. 94 3391
Google Scholar
[166] Kakimoto K i, Kaneko R, Kagomiya I 2012 Jpn. J. Appl. Phys. 51 09LD06
Google Scholar
[167] Haertling G 1967 J. Am. Ceram. Soc. 50 329
Google Scholar
[168] Fang J, Wang X, Tian Z, Zhong C, Li L, Zuo R 2010 J. Am. Ceram. Soc. 93 3552
Google Scholar
[169] Qin Y, Zhang J, Yao W, Wang C, Zhang S 2015 J. Am. Ceram. Soc. 98 1027
Google Scholar
[170] Esin A, Alikin D, Turygin A, Abramov A, Hreščak J, Walker J, Rojac T, Bencan A, Malic B, Kholkin A 2017 J. Appl. Phys. 121 074101
Google Scholar
[171] Wang K, Malič B, Wu J 2018 MRS Bull. 43 607
Google Scholar
[172] Cen Z, Yu Y, Zhao P, Chen L, Zhu C, Li L, Wang X 2019 J. Mater. Chem. C 7 1379
Google Scholar
[173] Li E, Kakemoto H, Hoshina T, Tsurumi T 2008 Jpn. J. Appl. Phys. 47 7702
Google Scholar
[174] Hagh N M, Kerman K, Jadidian B, Safari A 2009 J. Eur. Ceram. Soc. 29 2325
Google Scholar
[175] Han H S, Koruza J, Patterson E A, Schultheiß J, Erdem E, Jo W, Lee J S, Rödel J 2017 J. Eur. Ceram. Soc. 37 2083
Google Scholar
[176] Zhen Y, Li J F 2007 J. Am. Ceram. Soc. 90 3496
Google Scholar
[177] Fisher J G, Kang S J L 2009 J. Eur. Ceram. Soc. 29 2581
Google Scholar
[178] Thong H C, Xu Z, Zhao C, Lou L Y, Chen S, Zuo S Q, Li J F, Wang K 2019 J. Am. Ceram. Soc. 102 836
Google Scholar
[179] Thong H C, Zhao C, Zhu Z X, Chen X, Li J F, Wang K 2019 Acta Mater. 166 551
Google Scholar
[180] Pop-Ghe P, Stock N, Quandt E 2019 Sci. Rep. 9 1
Google Scholar
[181] Cho C R, Grishin A 2000 J. Appl. Phys. 87 4439
Google Scholar
[182] Paterson A R, Nagata H, Tan X, Daniels J E, Hinterstein M, Ranjan R, Groszewicz P B, Jo W, Jones J L 2018 MRS Bull. 43 600
Google Scholar
[183] Takenaka T, Nagata H, Hiruma Y 2008 Jpn. J. Appl. Phys. 47 3787
Google Scholar
[184] Nagata H, Takenaka T 2001 J. Eur. Ceram. Soc. 21 1299
Google Scholar
[185] Yi J Y, Lee J K, Hong K S 2002 J. Am. Ceram. Soc. 85 3004
[186] Naderer M, Kainz T, Schütz D, Reichmann K 2014 J. Eur. Ceram. Soc. 34 663
Google Scholar
[187] Qiao X S, Chen X M, Lian H L, Zhou J P, Liu P 2016 J. Eur. Ceram. Soc. 36 3995
Google Scholar
[188] Seo I T, Steiner S, Frömling T 2017 J. Eur. Ceram. Soc. 37 1429
Google Scholar
[189] Zhang Y R, Li J F, Zhang B P 2008 J. Am. Ceram. Soc. 91 2716
Google Scholar
[190] Cernea M, Galassi C, Vasile B S, Capiani C, Berbecaru C, Pintilie I, Pintilie L 2012 J. Eur. Ceram. Soc. 32 2389
Google Scholar
[191] Taghaddos E, Charalambous H, Tsakalakos T, Safari A 2019 J. Eur. Ceram. Soc. 39 2882
Google Scholar
[192] Bai W, Chen D, Zheng P, Xi J, Zhou Y, Shen B, Zhai J, Ji Z 2017 J. Eur. Ceram. Soc. 37 2591
Google Scholar
[193] Si Y, Li Y, Li L, Li H, Zhao Z, Dai Y 2020 J. Am. Ceram. Soc. 103 1765
Google Scholar
[194] Veera Gajendra Babu M, Bagyalakshmi B, Pathinettam Padiyan D, Ren Y, Sundarakannan B 2017 Scripta Mater. 141 67
Google Scholar
[195] Koruza J, Groszewicz P, Breitzke H, Buntkowsky G, Rojac T, Malič B 2017 Acta Mater. 126 77
Google Scholar
[196] Liu X, Xue S, Wang F, Zhai J, Shen B 2019 Acta Mater. 164 12
Google Scholar
[197] Li H L, Liu Q, Zhou J J, Wang K, Li J F, Liu H, Fang J Z 2016 J. Eur. Ceram. Soc. 36 2849
Google Scholar
[198] Khatua D K, Mehrotra T, Mishra A, Majumdar B, Senyshyn A, Ranjan R 2017 Acta Mater. 134 177
Google Scholar
[199] Muthuramalingam M, Ruth D J, Babu M V G, Ponpandian N, Mangalaraj D, Sundarakannan B 2016 Scripta Mater. 112 58
Google Scholar
计量
- 文章访问数: 24597
- PDF下载量: 1148
- 被引次数: 0