搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BaTiO3基无铅陶瓷大电致伸缩系数

陈小明 李国荣

引用本文:
Citation:

BaTiO3基无铅陶瓷大电致伸缩系数

陈小明, 李国荣

Large electrostrictive coefficients of BaTiO3-based lead-free ceramics

Chen Xiao-Ming, Li Guo-Rong
PDF
HTML
导出引用
  • 微位移驱动器在航天、半导体和工业等领域有着重要应用, 现在市场上大部分采用的是铅基压电陶瓷材料. 出于环境保护和法规限制的考虑, 亟需研发具有优良电致伸缩性能的无铅陶瓷材料. 作为一类ABO3型铁电体, (Ba,Ca)(Ti,Zr)O3 (BCTZ) 无铅陶瓷由于具备高压电系数而引发大量关注. 本文借助固相法, 制备了高电致伸缩系数的(Ba0.85Ca0.15)(Ti0.9Zr0.1)O3陶瓷(BCTZ). 研究了烧结温度对BCTZ陶瓷结构和电学性能的影响. 研究结果表明: 在室温附近, BCTZ陶瓷晶相结构形成正交(O)-四方(T)两相共存. 烧结温度促进了BCTZ陶瓷致密性改善和晶粒长大. 当烧结温度为1300 ℃时, BCTZ陶瓷晶粒尺寸在1 μm左右,可获得大电致伸缩系数Q33 (5.84 × 10–2 m4/C2), 大约是传统PZT陶瓷的2倍. 这可能是陶瓷晶粒尺寸所产生的表面效应和A—O化学键所具有的强离子性共同作用的结果. 此外, 室温附近BCTZ陶瓷虽处于正交-四方两相相界, 但陶瓷电致伸缩系数Q33在测量温度为25—100 ℃范围间具有良好的温度稳定性.
    AbstractMicro-displacement actuators have important applications in aerospace, semiconductor, industry and other fields. Now most of the lead-based piezoelectric ceramics are used in the market. In consideration of environmental protection and legal restriction, it is urgent to develop lead-free ceramic materials with excellent electrostrictive properties. As a kind of ABO3-type ferroelectrics, (Ba,Ca)(Ti,Zr)O3 lead-free ceramics have attracted a lot of attention because of their high piezoelectricity. In this work, (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 (BCTZ) ceramics with high electrostrictive coefficient are prepared by the solid-state method. The effects of sintering temperature on the structures and electrical properties of BCTZ ceramics are studied. The results show that the sintering temperature can help to improve density and grain growth of BCTZ ceramic.There are no impurity phases in the BCTZ ceramic systems, and all samples show ABO3-type perovskite structures. At room temperature, the crystal structure of BCTZ ceramic forms coexistence of orthogonal (O)-tetragonal (T) phase. The dielectric peak of BCTZ ceramic is widened, and the Curie temperature reaches a maximum value of 110 ℃ when Ts = 1300 ℃. With the increase of sintering temperature, the dielectric peak of BCTZ ceramic gradually becomes narrowed, and the Curie temperature of ceramic moves toward low temperature.As the sintering temperature is 1300 ℃, the grain size of BCTZ ceramic is 1 μm, the large electrostrictive coefficient Q33 (5.84 × 10–2 m4/C2) can be obtained, which is about twice that of traditional PZT ceramic. This may be attributed to combination of the surface effect caused by grain size of BCTZ ceramic with the strong ionic nature of A-O chemical bond. In addition, although BCTZ ceramic has an O-T phase boundary near room temperature, the electrostrictive coefficient Q33 of ceramic has good temperature stability in a range of 25–100 ℃. It shows that the crystal phase and temperature have no effect on the electrostrictive coefficient of BCTZ lead-free ceramic. It provides a new idea for designing the high electrostrictive properties of lead-free piezoelectric ceramics with potential applications.
      通信作者: 陈小明, chen-xm123@163.com
    • 基金项目: 国家自然科学基金(批准号: 52162015)、贵州省自然科学基金(批准号: [2020]1Y204)、中国科学院无机功能材料与器件重点实验室开放课题(批准号: KLIFMD202201)和贵州理工学院项目 (批准号: XJGC20190920, GZLGXM-21)资助的课题.
      Corresponding author: Chen Xiao-Ming, chen-xm123@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52162015), the Natural Science Foundation of Guizhou Province, China (Grant No. [2020]1Y204), the Opening Project of Key Laboratory of Inorganic Functional Materials and Devices, Chinese Academy of Sciences (Grant No. KLIFMD202201), and the Fund of Guizhou Institute of Technology, China (Grant Nos. XJGC20190920, GZLGXM-21).
    [1]

    Panda P K 2009 J. Mater. Sci. 44 5049Google Scholar

    [2]

    Takenaka T, Nagata H 2005 J. Eur. Ceram. Soc. 25 2693Google Scholar

    [3]

    Wada S, Nitta M, Kumada N, Tanaka D, Furukawa M, Ohno S, Moriyoshi C, Kuroiwa Y 2008 Jpn. J. Appl. Phys. 47 7678Google Scholar

    [4]

    Huang Y, Zhao C, Wu B, Wu J 2020 ACS Appl. Mater. Interfaces 12 23885Google Scholar

    [5]

    Habib M, Lqbal M J, Lee M H, Kim D, Akram F, Gul M, Zeb A, Rehman I U, Kim M H, Song T K 2022 Mater. Res. Bull. 146 111571Google Scholar

    [6]

    Liu Z G, Tang Z H, Hu S C, Yao D J, Sun F, Chen D Y, Guo X B, Liu Q X, Jiang Y P, Tang X G 2020 J. Mater. Chem. C 8 13405Google Scholar

    [7]

    Jaita P, Jarupoom P 2021 J. Asian Ceram. Societies 9 975Google Scholar

    [8]

    Duraisamy D, Venkatesan G N 2020 Sens. Actuators, A 315 112307Google Scholar

    [9]

    Wu W J, Ma J, Wang N N, Shi C Y, Chen K, Zhu Y L, Chen M, Wu B 2020 J. Alloys Compd. 814 152240Google Scholar

    [10]

    Ni H M, Luo L H, Li W P, Zhu Y J, Luo H S 2011 J. Alloys Compd. 509 3958Google Scholar

    [11]

    Cao W P, Sheng J, Liu Z, Gao C, Wang Z H, Wang J, Chang J, Wang Z, Li W L 2020 Mod. Phys. Lett. B 34 2050100Google Scholar

    [12]

    Varade P, Pandey A H, Gupta S M, Venkataramani N, Kulkarni A R 2020 Appl. Phys. Lett. 117 212901Google Scholar

    [13]

    Chen K, Ma J, Wu J, Wang X Y, Miao F, Huang Y, Shi C Y, Wu W J, Wu B 2020 J. Mater. Sci.-Mater. Electron. 31 12292Google Scholar

    [14]

    Tsai C C, Liao W H, Chu S Y, Hong C S, Yu M C, Wei Z Y, Lin Y Y 2021 Ceram. Int. 47 7207Google Scholar

    [15]

    Wang P, Li Y X, Lu Y Q 2011 J. Eur. Ceram. Soc. 31 2005Google Scholar

    [16]

    Liu W, Ren X 2009 Phys. Rev. Lett. 103 257602Google Scholar

    [17]

    Chen X, Zeng J, Kim D, Zheng L, Lou Q, Hong Park C, Li G 2019 Mater. Chem. Phys. 231 173Google Scholar

    [18]

    Dai Z H, Xie J L, Chen Z B, Zhou S, Liu J J, Liu W G, Xi Z Z, Ren X B 2021 Chem. Eng. J. 410 128341Google Scholar

    [19]

    Li F, Jin L, Guo R 2014 Appl. Phys. Lett. 105 232903Google Scholar

    [20]

    Jin L, Huo R, Guo R, Li F, Wang D, Tian Y, Hu Q, Wei X, He Z, Yan Y, Liu G 2016 ACS Appl. Mater. Interfaces 8 31109Google Scholar

    [21]

    Xiao F, Ma W, Sun Q, Huan Z, Li J, Tang C 2013 J. Mater. Sci. - Mater. Electron. 24 2653Google Scholar

    [22]

    Chen X, Ruan X, Zhao K, He X, Zeng J, Li Y, Zheng L, Park C H, Li G 2015 J. Alloys Compd. 632 103Google Scholar

    [23]

    Okazaki K, Nagata K 1973 J. Am. Ceram. Soc. 56 82Google Scholar

    [24]

    陈小明, 王明焱, 唐木智明, 李国荣 2021 70 197701Google Scholar

    Chen X M, Wang M Y, Karaki T, Li G R 2021 Acta Phys. Sin. 70 197701Google Scholar

    [25]

    Yu Z, Ang C, Guo R, Bhalla A S 2007 Mater. Lett. 61 326Google Scholar

    [26]

    Yu Z, Ang C, Guo R, Bhalla A S 2002 J. Appl. Phys. 92 2655Google Scholar

    [27]

    Sciau P, Calvarin G, Ravez J 1999 Solid State Commun. 113 77Google Scholar

    [28]

    Tang X G, Wang J, Wang X X, Chan H L W 2004 Solid State Commun. 131 163Google Scholar

    [29]

    Mastelaro V R, Favarim H R, Mesquita A, Michalowicz A, Moscovici J, Eiras J A 2015 Acta Mater. 84 164Google Scholar

    [30]

    Känzig W 1955 Phys. Rev. 98 549Google Scholar

    [31]

    Cross L E 1996 Mater. Chem. Phys. 43 108Google Scholar

    [32]

    Zhang S T, Kounga A B, Aulbach E, Ehrenberg H, Rödel J 2007 Appl. Phys. Lett. 91 112906Google Scholar

    [33]

    Guo Y, Gu M, Luo H, Liu Y, Withers R L 2011 Phys. Rev. B 83 054118Google Scholar

    [34]

    Yan K, Ren X 2014 J. Phys. D:Appl. Phys. 47 015309Google Scholar

    [35]

    Li F, Jin L, Xu Z, Zhang S 2014 Appl. Phys. Rev. 1 011103Google Scholar

    [36]

    Zuo R Z, Qi H, Fu J, Li J F, Shi M, Xu Y D 2016 Appl. Phys. Lett. 108 232904Google Scholar

    [37]

    Haertling G H 1987 Ferroelectrics 75 25Google Scholar

    [38]

    Weaver P M, Cain M G, Stewart M 2010 Appl. Phys. Lett. 96 142905Google Scholar

    [39]

    Zhang S T, Kounga A B, Jo W, Jamin C, Seifert K, Granzow T, Rödel J, Damjanovic D 2009 Adv. Mater. 21 4716Google Scholar

    [40]

    Bobnar V, Malič B, Holc J, Kosec M, Steinhausen R, Beige H 2005 J. Appl. Phys. 98 024113Google Scholar

    [41]

    Li F, Jin L, Guo R P 2014 Appl. Phys. Lett. 105 232903

    [42]

    Zuo R, Qi H, Fu J, Li J, Shi M, Xu Y 2016 Appl. Phys. Lett. 108 232904

    [43]

    Ghosez P, Gonze X, Lambin P, Michenaud J P 1995 Phys. Rev. B 51 6765Google Scholar

    [44]

    Ghosez P, Michenaud J P, Gonze X 1998 Phys. Rev. B 58 6224Google Scholar

    [45]

    Haertling G H, Land C E 1971 J. Am. Ceram. Soc. 54 1Google Scholar

  • 图 1  (a) 烧结于不同温度下BCTZ陶瓷晶相结构; (b), (c) 相应烧结温度下BCTZ陶瓷在衍射角为44°—46°和65°—67°范围下的衍射峰

    Fig. 1.  (a) X-ray diffraction patterns of the BCTZ ceramics sintered at different temperatures; (b), (c) the expanded XRD patterns of BCTZ ceramics sintered at different temperatures in the range of 44°–46° and 65°–67°

    图 2  BCTZ陶瓷分别烧于(a) 1300 ℃, (b) 1350 ℃, (c) 1400 ℃, (d) 1450 ℃, (e) 1475 ℃, (f) 1500 ℃/ 2 h下的表面形貌

    Fig. 2.  SEM images of BCTZ ceramics sintered at (a) 1300 ℃, (b) 1350 ℃, (c) 1400 ℃, (d) 1450 ℃, (e) 1475 ℃, (f) 1500 ℃ for 2 h.

    图 3  在不同烧结温度下BCTZL陶瓷铁电性能

    Fig. 3.  ferroelectric properties of BCTZL ceramics as a function of sintering temperature.

    图 4  不同烧结温度下BCTZ陶瓷的介温曲线 (a) Ts = 1300 ℃; (b) Ts = 1350 ℃; (c) Ts = 1400 ℃; (d) Ts = 1450 ℃; (e) Ts = 1475 ℃; (f) Ts = 1500 ℃

    Fig. 4.  Temperature dependence of dielectric properties for BCTZ ceramics: (a) Ts = 1300 ℃; (b) Ts = 1350 ℃; (c) Ts = 1400 ℃; (d) Ts = 1450 ℃; (e) Ts = 1475 ℃; (f) Ts = 1500 ℃.

    图 5  不同烧结温度下BCTZ 陶瓷的双电致应变

    Fig. 5.  Bipolar electric field-induced strain for BCTZ ceramics at different sintering temperatures.

    图 6  不同烧结温度下BCTZ 陶瓷的S-P曲线: (a) Ts = 1300 ℃; (b) Ts = 1350 ℃; (c) Ts = 1400 ℃; (d) Ts = 1450 ℃; (e) Ts = 1475 ℃; (f) Ts = 1500 ℃

    Fig. 6.  Strain versus polarization curves for BCTZ ceramics sintered at different temperatures: (a) Ts = 1300 ℃; (b) Ts = 1350 ℃; (c) Ts = 1400 ℃; (d) Ts = 1450 ℃; (e) Ts = 1475 ℃; (f) Ts = 1500 ℃.

    图 7  不同测量温度下BCTZ 陶瓷的S-P曲线 (a) Ts = 1300 ℃; (b) Ts = 1475 ℃

    Fig. 7.  Strain versus polarization curves for BCTZ ceramics measured at different temperatures: (a) Ts = 1300 ℃; (b) Ts = 1475 ℃.

    图 8  一些陶瓷体系的Q33$\displaystyle\sum q^2/{\bar{z}}_{33}^{*2}$的联系

    Fig. 8.  Q33 of ceramics as functions of $\displaystyle\sum q^2/{\bar{z}}_{33}^{*2}$.

    表 1  不同烧结温度下BCTZ 陶瓷电致伸缩系数Q33

    Table 1.  Q33 as a function of sintering temperature for BCTZ ceramics.

    Ts/℃Q33/
    (10–2 m4·C–2)
    R-squareεrAverage grain size/μm
    13005.840.977216211
    13503.510.972828702
    14004.090.9876828366
    14504.270.98677278112
    14754.340.980672904
    15004.470.98348277614
    下载: 导出CSV

    表 2  不同测量温度下BCTZ 陶瓷电致伸缩系数Q33 (Ts = 1300 ℃; 1475 ℃)

    Table 2.  Q33 as a function of temperature for BCTZ ceramics (Ts = 1300 ℃; 1475 ℃).

    T/℃Ts = 1300 ℃
    Q33/(10–2 m4·C–2)
    Ts = 1475 ℃
    Q33/(10–2 m4·C–2)
    255.844.34
    506.394.62
    706.614.78
    856.764.68
    1006.834.29
    下载: 导出CSV
    Baidu
  • [1]

    Panda P K 2009 J. Mater. Sci. 44 5049Google Scholar

    [2]

    Takenaka T, Nagata H 2005 J. Eur. Ceram. Soc. 25 2693Google Scholar

    [3]

    Wada S, Nitta M, Kumada N, Tanaka D, Furukawa M, Ohno S, Moriyoshi C, Kuroiwa Y 2008 Jpn. J. Appl. Phys. 47 7678Google Scholar

    [4]

    Huang Y, Zhao C, Wu B, Wu J 2020 ACS Appl. Mater. Interfaces 12 23885Google Scholar

    [5]

    Habib M, Lqbal M J, Lee M H, Kim D, Akram F, Gul M, Zeb A, Rehman I U, Kim M H, Song T K 2022 Mater. Res. Bull. 146 111571Google Scholar

    [6]

    Liu Z G, Tang Z H, Hu S C, Yao D J, Sun F, Chen D Y, Guo X B, Liu Q X, Jiang Y P, Tang X G 2020 J. Mater. Chem. C 8 13405Google Scholar

    [7]

    Jaita P, Jarupoom P 2021 J. Asian Ceram. Societies 9 975Google Scholar

    [8]

    Duraisamy D, Venkatesan G N 2020 Sens. Actuators, A 315 112307Google Scholar

    [9]

    Wu W J, Ma J, Wang N N, Shi C Y, Chen K, Zhu Y L, Chen M, Wu B 2020 J. Alloys Compd. 814 152240Google Scholar

    [10]

    Ni H M, Luo L H, Li W P, Zhu Y J, Luo H S 2011 J. Alloys Compd. 509 3958Google Scholar

    [11]

    Cao W P, Sheng J, Liu Z, Gao C, Wang Z H, Wang J, Chang J, Wang Z, Li W L 2020 Mod. Phys. Lett. B 34 2050100Google Scholar

    [12]

    Varade P, Pandey A H, Gupta S M, Venkataramani N, Kulkarni A R 2020 Appl. Phys. Lett. 117 212901Google Scholar

    [13]

    Chen K, Ma J, Wu J, Wang X Y, Miao F, Huang Y, Shi C Y, Wu W J, Wu B 2020 J. Mater. Sci.-Mater. Electron. 31 12292Google Scholar

    [14]

    Tsai C C, Liao W H, Chu S Y, Hong C S, Yu M C, Wei Z Y, Lin Y Y 2021 Ceram. Int. 47 7207Google Scholar

    [15]

    Wang P, Li Y X, Lu Y Q 2011 J. Eur. Ceram. Soc. 31 2005Google Scholar

    [16]

    Liu W, Ren X 2009 Phys. Rev. Lett. 103 257602Google Scholar

    [17]

    Chen X, Zeng J, Kim D, Zheng L, Lou Q, Hong Park C, Li G 2019 Mater. Chem. Phys. 231 173Google Scholar

    [18]

    Dai Z H, Xie J L, Chen Z B, Zhou S, Liu J J, Liu W G, Xi Z Z, Ren X B 2021 Chem. Eng. J. 410 128341Google Scholar

    [19]

    Li F, Jin L, Guo R 2014 Appl. Phys. Lett. 105 232903Google Scholar

    [20]

    Jin L, Huo R, Guo R, Li F, Wang D, Tian Y, Hu Q, Wei X, He Z, Yan Y, Liu G 2016 ACS Appl. Mater. Interfaces 8 31109Google Scholar

    [21]

    Xiao F, Ma W, Sun Q, Huan Z, Li J, Tang C 2013 J. Mater. Sci. - Mater. Electron. 24 2653Google Scholar

    [22]

    Chen X, Ruan X, Zhao K, He X, Zeng J, Li Y, Zheng L, Park C H, Li G 2015 J. Alloys Compd. 632 103Google Scholar

    [23]

    Okazaki K, Nagata K 1973 J. Am. Ceram. Soc. 56 82Google Scholar

    [24]

    陈小明, 王明焱, 唐木智明, 李国荣 2021 70 197701Google Scholar

    Chen X M, Wang M Y, Karaki T, Li G R 2021 Acta Phys. Sin. 70 197701Google Scholar

    [25]

    Yu Z, Ang C, Guo R, Bhalla A S 2007 Mater. Lett. 61 326Google Scholar

    [26]

    Yu Z, Ang C, Guo R, Bhalla A S 2002 J. Appl. Phys. 92 2655Google Scholar

    [27]

    Sciau P, Calvarin G, Ravez J 1999 Solid State Commun. 113 77Google Scholar

    [28]

    Tang X G, Wang J, Wang X X, Chan H L W 2004 Solid State Commun. 131 163Google Scholar

    [29]

    Mastelaro V R, Favarim H R, Mesquita A, Michalowicz A, Moscovici J, Eiras J A 2015 Acta Mater. 84 164Google Scholar

    [30]

    Känzig W 1955 Phys. Rev. 98 549Google Scholar

    [31]

    Cross L E 1996 Mater. Chem. Phys. 43 108Google Scholar

    [32]

    Zhang S T, Kounga A B, Aulbach E, Ehrenberg H, Rödel J 2007 Appl. Phys. Lett. 91 112906Google Scholar

    [33]

    Guo Y, Gu M, Luo H, Liu Y, Withers R L 2011 Phys. Rev. B 83 054118Google Scholar

    [34]

    Yan K, Ren X 2014 J. Phys. D:Appl. Phys. 47 015309Google Scholar

    [35]

    Li F, Jin L, Xu Z, Zhang S 2014 Appl. Phys. Rev. 1 011103Google Scholar

    [36]

    Zuo R Z, Qi H, Fu J, Li J F, Shi M, Xu Y D 2016 Appl. Phys. Lett. 108 232904Google Scholar

    [37]

    Haertling G H 1987 Ferroelectrics 75 25Google Scholar

    [38]

    Weaver P M, Cain M G, Stewart M 2010 Appl. Phys. Lett. 96 142905Google Scholar

    [39]

    Zhang S T, Kounga A B, Jo W, Jamin C, Seifert K, Granzow T, Rödel J, Damjanovic D 2009 Adv. Mater. 21 4716Google Scholar

    [40]

    Bobnar V, Malič B, Holc J, Kosec M, Steinhausen R, Beige H 2005 J. Appl. Phys. 98 024113Google Scholar

    [41]

    Li F, Jin L, Guo R P 2014 Appl. Phys. Lett. 105 232903

    [42]

    Zuo R, Qi H, Fu J, Li J, Shi M, Xu Y 2016 Appl. Phys. Lett. 108 232904

    [43]

    Ghosez P, Gonze X, Lambin P, Michenaud J P 1995 Phys. Rev. B 51 6765Google Scholar

    [44]

    Ghosez P, Michenaud J P, Gonze X 1998 Phys. Rev. B 58 6224Google Scholar

    [45]

    Haertling G H, Land C E 1971 J. Am. Ceram. Soc. 54 1Google Scholar

  • [1] 尚帅朋, 陆勇俊, 王峰会. 表面效应对纳米线电极屈曲失稳的影响.  , 2022, 71(3): 033101. doi: 10.7498/aps.71.20211864
    [2] 徐然, 冯玉军, 魏晓勇, 徐卓. PbLa(Zr, Sn, Ti)O3反铁电陶瓷在脉冲电场下的极化与相变行为.  , 2020, 69(12): 127710. doi: 10.7498/aps.69.20200209
    [3] 杜金花, 李雍, 孙宁宁, 赵烨, 郝喜红. (1–x)K0.5Na0.5NbO3-xBi(Mg0.5Ti0.5)O3无铅弛豫铁电陶瓷的介电、铁电和高储能行为.  , 2020, 69(12): 127703. doi: 10.7498/aps.69.20200213
    [4] 杨东升, 刘官厅. 磁电弹性材料中含有带四条纳米裂纹的正4n边形纳米孔的反平面断裂问题.  , 2020, 69(24): 244601. doi: 10.7498/aps.69.20200850
    [5] 梁晋洁, 高宁, 李玉红. 表面效应对铁${\left\langle 100 \right\rangle} $间隙型位错环的影响.  , 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [6] 李敏, 时鑫娜, 张泽霖, 吉彦达, 樊济宇, 杨浩. 柔性Pb(Zr0.53Ti0.47)O3薄膜的高温铁电特性.  , 2019, 68(8): 087302. doi: 10.7498/aps.68.20181967
    [7] 彭劼扬, 王家海, 沈斌, 李浩亮, 孙昊明. 纳米颗粒的表面效应和电极颗粒间挤压作用对锂离子电池电压迟滞的影响.  , 2019, 68(9): 090202. doi: 10.7498/aps.68.20182302
    [8] 伍友成, 刘高旻, 戴文峰, 高志鹏, 贺红亮, 郝世荣, 邓建军. 冲击波作用下Pb(Zr0.95Ti0.05)O3铁电陶瓷去极化后电阻率动态特性.  , 2017, 66(4): 047201. doi: 10.7498/aps.66.047201
    [9] 蒋招绣, 王永刚, 聂恒昌, 刘雨生. 极化状态与方向对单轴压缩下Pb(Zr0.95Ti0.05)O3铁电陶瓷畴变与相变行为的影响.  , 2017, 66(2): 024601. doi: 10.7498/aps.66.024601
    [10] 蒋招绣, 辛铭之, 申海艇, 王永刚, 聂恒昌, 刘雨生. 多孔未极化Pb(Zr0.95Ti0.05)O3铁电陶瓷单轴压缩力学响应与相变.  , 2015, 64(13): 134601. doi: 10.7498/aps.64.134601
    [11] 冷森林, 石维, 龙禹, 李国荣. 高温无铅BaTiO3-(Bi1/2Na1/2)TiO3正温度系数电阻陶瓷阻抗和介电谱分析.  , 2014, 63(4): 047102. doi: 10.7498/aps.63.047102
    [12] 朱杰, 张辉, 张鹏翔, 谢康, 胡俊涛. Pb(Zr0.3Ti0.7)O3铁电薄膜激光感生电压效应.  , 2010, 59(9): 6417-6422. doi: 10.7498/aps.59.6417
    [13] 丁南, 唐新桂, 匡淑娟, 伍君博, 刘秋香, 何琴玉. 锰掺杂对Ba(Zr, Ti)O3陶瓷压电与介电性能的影响.  , 2010, 59(9): 6613-6619. doi: 10.7498/aps.59.6613
    [14] 田建辉, 韩 旭, 刘桂荣, 龙述尧, 秦金旗. SiC纳米杆的弛豫性能研究.  , 2007, 56(2): 643-648. doi: 10.7498/aps.56.643
    [15] 罗文雄, 黄世华, 由芳田, 彭洪尚. YBO3:Eu3+纳米晶发光特性.  , 2007, 56(3): 1765-1769. doi: 10.7498/aps.56.1765
    [16] 赵苏串, 李国荣, 张丽娜, 王天宝, 丁爱丽. Na0.25K0.25Bi0.5TiO3无铅压电陶瓷的介电特性研究.  , 2006, 55(7): 3711-3715. doi: 10.7498/aps.55.3711
    [17] 徐卓, 冯玉军, 郑曙光, 金安, 王方林, 姚熹. 等静压和温度诱导的PbLa(Zr,Sn,Ti)O3反铁电陶瓷相变和介电性能研究.  , 2001, 50(9): 1787-1794. doi: 10.7498/aps.50.1787
    [18] 刘 鹏, 杨同青, 徐 卓, 张良莹, 姚 熹. Pb(Zr,Sn,Ti)O3反铁电陶瓷场诱相变性能的改进.  , 2000, 49(9): 1852-1858. doi: 10.7498/aps.49.1852
    [19] 刘 鹏, 杨同青, 张良莹, 姚 熹. Pb(Zr,Sn,Ti)O3反铁电陶瓷的低温相变扩散与极化弛豫.  , 2000, 49(11): 2300-2303. doi: 10.7498/aps.49.2300
    [20] 陈小兵, 严 峰, 李春华, 朱劲松, 沈惠敏, 王业宁. Pb(Zr0.52Ti0.48)O3陶瓷畴界粘滞运动的介电损耗模拟.  , 1999, 48(8): 1529-1534. doi: 10.7498/aps.48.1529
计量
  • 文章访问数:  4315
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-14
  • 修回日期:  2022-04-11
  • 上网日期:  2022-08-06
  • 刊出日期:  2022-08-20

/

返回文章
返回
Baidu
map