-
采用传统的固相法制备了(1-x)(K0.5Na0.5NbO3-LiSbO3-BiFeO3)-xCuFe2O4 (x=0.1, 0.2, 0.3, 0.4) 磁电复合陶瓷, 并借助X射线衍射仪、扫描电镜和磁电耦合系数测试仪等对复合陶瓷的微结构和性能进行了分析. 结果表明, 复合陶瓷的K0.5Na0.5NbO3-LiSbO3-BiFeO3和CuFe2O4物相之间发生了一定的离子相互扩散作用, 且两相的颗粒大小匹配性较好. 随着CuFe2O4含量增加, 复合陶瓷的压电系数从130 pC/N减小到30 pC/N, 饱和磁致伸缩系数从4.5×10-6增加到12.4×10-6左右, 磁电耦合系数表现出先增加后减小, 在x=0.3时获得最大的磁电耦合系数9.4 mV·cm-1·Oe-1.
-
关键词:
- K0.5Na0.5NbO3-LiSbO3-BiFeO3 /
- CuFe2O4 /
- 磁电耦合
The (1-x)(K0.5Na0.5NbO3-LiSbO3-BiFeO3)-xCuFe2O4 (x=0.1, 0.2, 0.3 and 0.4) magnetoelectric composite ceramics are prepared by the conventional solid-state reaction method. The microstructures and properties of the composite ceramics are characterized by X-ray diffractometer, scanning electron microscope and magnetoelectric coupling coefficient meter. The weak ionic interdiffusions between the phases K0.5Na0.5NbO3-LiSbO3-BiFeO3 and CuFe2O4 are observed and their particle sizes are well matched between each other. With the increase of CuFe2O4 content, the piezoelectric coefficient (d33) of the composite ceramics decreases from 130 pC/N to 30 pC/N and the magnetostriction coefficient (-λ) increases from 4.5×10-6 to 12.4×10-6. The magnetoelectric coupling coefficient (αE) of the composite ceramics first increases and then decreases with the CuFe2O4 content increasing. When the composition x=0.3, a maximum value of αE=9.4 mV·cm-1·Oe-1 is achieved.-
Keywords:
- K0.5Na0.5NbO3-LiSbO3-BiFeO3 /
- CuFe2O4 /
- magnetoelectric coupling
[1] Allibe J, Infante I C, Fusil S, Bouzehouane K, Jacquet E, Deranlot C, Bibes M, Barthélémy A 2009 Appl. Phys. Lett. 95 182503
[2] Pradhan D K, Choudhary R N P, Rinaldi C, Katiyar R S 2009 J. Appl. Phys. 106 024102
[3] Su W N, Wang D H, Cao Q Q, Han Z D, Yin J, Zhang J R, Du Y W 2007 Appl. Phys. Lett. 91 092905
[4] Zhang X D, Park S, Park G 2010 Appl. Phys. Lett. 96 076101
[5] Zavaliche F, Zheng H, Mohaddes-Ardabili L, Yang S Y, Zhan Q, Shafer P, Reilly E, Chopdekar R, Jia Y, Schlom D G, Suzuki Y, Ramesh R 2005 Nano Lett. 5 1793
[6] Zhou Y, Chen M G, Feng Z J, Wang X Y, Cui Y J, Zhang J C 2011 Chin. Phys. Lett. 28 107503
[7] Shi Z, Nan C W, Zhang J, Cai N, Li J F 2005 Appl. Phys. Lett. 87 012503
[8] Jiang M H, Liu X Y, Chen G H 2009 Scrip. Mater. 60 90
[9] Yamasaki Y, Miyasaka S, Kaneko Y, He J P, Arima T, Tokura Y 2006 Phys. Rev. Lett. 96 207206
[10] Kumar M, Yadav K L 2007 Mater. Lett. 61 2089
[11] Yang C H, Wen Y M, Li P, Bian L X 2008 Acta Phys. Sin. 57 7292 (in Chinese) [阳昌海, 文玉梅, 李平, 卞雷祥 2008 57 7292]
-
[1] Allibe J, Infante I C, Fusil S, Bouzehouane K, Jacquet E, Deranlot C, Bibes M, Barthélémy A 2009 Appl. Phys. Lett. 95 182503
[2] Pradhan D K, Choudhary R N P, Rinaldi C, Katiyar R S 2009 J. Appl. Phys. 106 024102
[3] Su W N, Wang D H, Cao Q Q, Han Z D, Yin J, Zhang J R, Du Y W 2007 Appl. Phys. Lett. 91 092905
[4] Zhang X D, Park S, Park G 2010 Appl. Phys. Lett. 96 076101
[5] Zavaliche F, Zheng H, Mohaddes-Ardabili L, Yang S Y, Zhan Q, Shafer P, Reilly E, Chopdekar R, Jia Y, Schlom D G, Suzuki Y, Ramesh R 2005 Nano Lett. 5 1793
[6] Zhou Y, Chen M G, Feng Z J, Wang X Y, Cui Y J, Zhang J C 2011 Chin. Phys. Lett. 28 107503
[7] Shi Z, Nan C W, Zhang J, Cai N, Li J F 2005 Appl. Phys. Lett. 87 012503
[8] Jiang M H, Liu X Y, Chen G H 2009 Scrip. Mater. 60 90
[9] Yamasaki Y, Miyasaka S, Kaneko Y, He J P, Arima T, Tokura Y 2006 Phys. Rev. Lett. 96 207206
[10] Kumar M, Yadav K L 2007 Mater. Lett. 61 2089
[11] Yang C H, Wen Y M, Li P, Bian L X 2008 Acta Phys. Sin. 57 7292 (in Chinese) [阳昌海, 文玉梅, 李平, 卞雷祥 2008 57 7292]
计量
- 文章访问数: 6360
- PDF下载量: 859
- 被引次数: 0