-
Based on the common behavior of the Vogel-Fulcher relation followed by both dielectric dispersion of relaxor ferroelectrics in transition region and the viscosity-temperature relation for glassy liquids in supercooled state, vacancy compensation principles of donor doped barium titanate systematic ceramics are analyzed. By the introduction of the concept of configurational entropy, the temperature dependent Ti cation vacancy reaction potential is investigated, and the results show that the increase in donor content gives rise to the increase in disorder degree, the increase in Ti cation vacancy content, and the decrease in size of average polar region; on condition that configurational entropy satisfies the Vogel-Fulcher relation, Ti cation vacancy reaction regime and therefore the polar region will both increase with temperature lowing, and the variation of the regime causes dielectric dispersion of relaxor ferroelectrics. Frozen effect happens and dispersion disappears for the Ti cation vacancy reaction at a certain lower temperature.
-
Keywords:
- relaxor ferroelectrics /
- dielectric dispersion /
- glassy
[1] Cross L E1987 Ferroelectrics 76 241
[2] Smolenskii G A 1970 J. Phys. Soc. Japan 28 26
[3] Yao X, Chen Z L, Cross L E 1983 J. Appl.Phys. 54 3399
[4] Yao X, Chen Z L, Cross L E 1984 Ferroelectrics 54 163
[5] Burns G, Dacol F H 1990 Ferroelectrics 104 25
[6] Glazounov A E, Tagantsev A K 1998 Appl. Phys. Lett. 73 856
[7] Angell C A1985 J. non-Cryst. Solids 73 1
[8] Cao W Q, Xiong J W, Sun J P 2007 Mater. Chem. Phys. 106 338
[9] Simon A, Ravez J, Maglione M 2004 J. Phys. Cond. Matter 16 963
[10] Yan Y, Jin L, Feng L 2006 Mater. Sci. Engin. B 130 146
[11] Feng P, Cao W Q 2010 J. Non-Cryst. Solids 356 1660
[12] Oian H, Busill L A 1996 Int. J. Mod. Phys. B 10 2007
[13] Ding N, Tang X G, Kuang S J, Wu J B, Liu Q X, He Q Y 2010 Acta Phys. Sin. 59 6613 (in Chinese) [丁 南, 唐新桂, 匡淑娟, 伍君博, 刘秋香, 何琴玉 2010 59 6613]
-
[1] Cross L E1987 Ferroelectrics 76 241
[2] Smolenskii G A 1970 J. Phys. Soc. Japan 28 26
[3] Yao X, Chen Z L, Cross L E 1983 J. Appl.Phys. 54 3399
[4] Yao X, Chen Z L, Cross L E 1984 Ferroelectrics 54 163
[5] Burns G, Dacol F H 1990 Ferroelectrics 104 25
[6] Glazounov A E, Tagantsev A K 1998 Appl. Phys. Lett. 73 856
[7] Angell C A1985 J. non-Cryst. Solids 73 1
[8] Cao W Q, Xiong J W, Sun J P 2007 Mater. Chem. Phys. 106 338
[9] Simon A, Ravez J, Maglione M 2004 J. Phys. Cond. Matter 16 963
[10] Yan Y, Jin L, Feng L 2006 Mater. Sci. Engin. B 130 146
[11] Feng P, Cao W Q 2010 J. Non-Cryst. Solids 356 1660
[12] Oian H, Busill L A 1996 Int. J. Mod. Phys. B 10 2007
[13] Ding N, Tang X G, Kuang S J, Wu J B, Liu Q X, He Q Y 2010 Acta Phys. Sin. 59 6613 (in Chinese) [丁 南, 唐新桂, 匡淑娟, 伍君博, 刘秋香, 何琴玉 2010 59 6613]
Catalog
Metrics
- Abstract views: 8244
- PDF Downloads: 597
- Cited By: 0