Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulated research on displacement damage of gallium nitride radiated by different neutron sources

Xie Fei Zang Hang Liu Fang He Huan Liao Wen-Long Huang Yu

Citation:

Simulated research on displacement damage of gallium nitride radiated by different neutron sources

Xie Fei, Zang Hang, Liu Fang, He Huan, Liao Wen-Long, Huang Yu
PDF
HTML
Get Citation
  • Gallium nitride (GaN), one of the third-generation wide-bandgap semiconductors, offers significant application for advanced electronic devices utilized in neutron irradiation environments, like the defense, space, and aerospace, etc. In these applications, neutron irradiation-induced defects affect the properties of GaN and eventually degrade the performance of devices. In this work, neutron transport process in GaN is simulated by using the Monte Carlo-based code, Geant4 toolkit under four different irradiation conditions, e.g. high flux isotope reactor, high temperature gas-cooled reactor, pressurized water reactor, and atmospheric neutron irradiation. The energy spectra of primary knock-on atoms (PKA) in GaN and the corresponding weighted spectra under those irradiation conditions are analyzed. It is found that there is one unusual “peak” at around 0.58 MeV in the Primary recoil spectrum, regardless of the irradiation conditions. This peak is attributed to the neutron reaction of hydrogen nucleus, i.e., (n, p). Because of the remarkable (n,p) reaction cross-section of low-energy neutron, the intensity of this peak is related to the ratio of low-energy neutron to the total neutron spectrum. By comparing these PKA energy spectra in GaN, we can see that the PKA energy spectrum created under atmospheric neutron irradiation is similar to that in the high flux isotopic reactor. Specifically, the energy distribution of PKA is wide, and the magnitude of energy is lower than those under fission neutron irradiation conditions. In combination with the effects of nuclear reaction products on electrical properties, the high flux isotopic reactor is more suitable for simulating the irradiation of GaN in an atmospheric neutron energy spectrum environment. These above results can provide not only some insights into the evaluation of the degradation of GaN-based electronic devices under neutron irradiation, but also dataset for the study of radiation damage effect of GaN in simulated neutron environment.
      Corresponding author: Zang Hang, zanghang@mail.xjtu.edu.cn
    • Funds: Project supported by the Science Challenge Project (Grant No. TZ2018004) and the National Natural Science Foundation of China (Grant No. 11975179)
    [1]

    贾婉丽, 周淼, 王馨梅, 纪卫莉 2018 10 107102Google Scholar

    Jia W L, Zhou M, Wang X M, Ji W L 2018 Acta Phys. Sin. 10 107102Google Scholar

    [2]

    赵德刚, 周梅, 左淑华 2007 56 5513Google Scholar

    Zhao D G, Zuo S H, Zhou M 2007 Acta Phys. Sin. 56 5513Google Scholar

    [3]

    张力, 林志宇, 罗俊, 王树龙, 张进成, 郝跃, 戴扬, 陈大正, 郭立新 2017 66 247302Google Scholar

    Zhang L, Lin Z Y, Luo J, Wang S L, Zhang J C, Hao Y, Dai Y, Chen D Z, Guo L X 2017 Acta Phys. Sin. 66 247302Google Scholar

    [4]

    孙殿照 2000 物理 30 413

    Sun D Z 2000 Physics 30 413

    [5]

    Hadis Morkoç 2008 Handbook of Nitride Semiconductors and Devices (Weinheim: Wiley-VCH) pp1–129

    [6]

    Lorenz K, Marques J G, Franco N, Alves E, Peres M, Correia M R, Monteiro T 2008 Nucl. Instrum. Methods Phys. Res., Sect. B 266 2780

    [7]

    Kazukauskas V, Kalendra V, Vaitkus V 2006 Nucl. Instrum. Methods Phys. Res., Sect. A 568 421

    [8]

    Zhang M L, Wang X L, Xiao H L, Yang C B, Wang R 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology Shanghai, November 1–4, 2010 p1533

    [9]

    张得玺 2015 硕士学位论文 (西安: 西安电子科技大学)

    Zhang D X 2015 M. S. Thesis (Xi’an: Xidian University) (in Chinese)

    [10]

    吕玲2014 博士学位论文 (西安 西安电子科技大学)

    Lv L 2014 Ph.D. Thesis (Xi’an Xidian University)(in Chinese)

    [11]

    Wang R X, Xu S J, Li S, Fung S, Beling C D, Wang K, Wei Z F, Zhou T J, Zhang J D, Gong M, Pang G K H 2004 Conference on Optoelectronic and Microelectronic Materials and Devices Brisbane December 8–10 2004 p141

    [12]

    Wang R X, Xu S J, Fung S, Beling C D, Wang K, Li S, Wei Z F, Zhou T J, Zhang J D, Huang Y 2005 Appl. Phys. Lett. 87 031906

    [13]

    王园明, 陈伟, 郭红霞, 何宝平, 罗尹虹, 姚志斌, 张凤祁, 张科营, 赵雯 2010 原子能科学技术 44 1505

    Wang Y M, Cheng W, Guo H X, He B P, Luo Y H, Yao Z B, Zhang F Q, Zhang K Y, Zhao W 2010 Atom Energ. Sci. Technol. 44 1505

    [14]

    曾志, 李君利, 程建平, 邱睿 2005 同位素 18 55Google Scholar

    Zeng Z, LI J L, Cheng J P, Qiu R 2005 J. Isotop. 18 55Google Scholar

    [15]

    路伟, 王同权, 王兴功, 刘雪林 2011 核技术 34 529

    Lu W, Wang T Q, Wang X G, Liu X L 2011 Nucl. Technol. 34 529

    [16]

    Agostinelli S, Allison J, Amako K 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 506 250

    [17]

    申帅帅, 贺朝会, 李永宏 2018 67 182401Google Scholar

    Shen S S, He C H, Li Y H 2018 Acta Phys. Sin. 67 182401Google Scholar

    [18]

    Apostolakis J, Asai M, Bogdanoy A G 2009 Radiat. Phys. Chem. 78 859

    [19]

    何博文, 贺朝会, 申帅帅, 陈袁妙粱 2017 原子能科学技术 51 543Google Scholar

    He B W, He C H, Shen S S, Chen Y M L 2017 Atom Energ. Sci. Technol. 51 543Google Scholar

    [20]

    郭达禧, 贺朝会, 臧航, 席建奇, 马梨, 杨涛, 张鹏 2013 原子能科学技术 47 1222Google Scholar

    Guo D X, He C H, Zang H, Xi J Q, Ma L, Yang T, Zhang P 2013 Atom Energ Sci Technol 47 1222Google Scholar

    [21]

    胡志良, 杨卫涛, 李永宏, 李洋, 贺朝会, 王松林, 周斌, 于全芝, 何欢, 谢飞, 白雨蓉, 梁天骄 2019 68 238502Google Scholar

    Hu Z L, Yang W T, Li Y H, Li Y, He C H, Wang S L, Zhou B, Yu Q Z, He H, Xie F, Bai Y R, Liang T J 2019 Acta Phys. Sin. 68 238502Google Scholar

    [22]

    Was GS. 2007 Fundamentals of Radiation Materials Science: Metals and Alloys (Berlin: Springer) pp545–577

    [23]

    Hu J W, Hayes A C, Wilson W B, Rizwan U 2010 Nucl. Eng Des 240 3751

    [24]

    Robinson M T, Torrens I M 1974 Phys. Rev. B 9 5008

    [25]

    Akkerman A, Barak J 2006 Proc. IEEE Trans. Nucl. Sci. 53 3667

    [26]

    Detlef F, Frank G 2009 Handbook of Spallation Research: Theory, Experiments and Applications (Berlin, Wiley-VCG) pp220-224

    [27]

    杨福家, 王炎森, 陆福全 2002 原子核物理 (第2版) (上海: 复旦大学出版社) 第153页

    Yang F J, Wang Y S, Lu F Q 2002 Nuclear Physics (Vol.2) (Shanghai: Fudan University Press) p153 (in Chinese)

    [28]

    Wiedersich H 1990 Radiat. Eff. and Defects. Solids 113 97

    [29]

    Mota F, Vila R, Ortiz C, Garcia A, Casal N, Ibarra A, Rapisarda D, Queral V 2011 Fusion Eng. Des. 86 2425

  • 图 1  四种典型的归一化中子能谱

    Figure 1.  Four typical normalized neutron spectrum

    图 2  中子在GaN中的平均自由程

    Figure 2.  The mean free path of neutrons in GaN.

    图 3  Geant4中模拟的几何模型

    Figure 3.  Simulated geometric model in Geant4.

    图 4  四种中子能谱在氮化镓中对应的初级反冲原子能谱

    Figure 4.  Primary recoil spectrum of four neutron spectra in GaN.

    图 5  高通量同位素堆外围辐照区环境下的初级反冲原子能谱分析

    Figure 5.  Analysis of primary recoil spectrum over peripheral irradiation area in high flux isotope reactor.

    图 6  中子辐照氮化镓的$ ({\rm{n}}, {\rm{p}})$反应截面

    Figure 6.  (n,p)reaction cross section for GaN.

    图 7  产氢反应比例随中子能量变化

    Figure 7.  Proportion of hydrogen production reaction varies with neutron energy.

    图 8  四种中子能谱的累积积分中子能谱

    Figure 8.  Cumulative integral neutron spectra of four neutron spectra.

    图 9  不同中子能谱在氮化镓中对应的初级反冲原子的能谱分布 (a)Ga初级反冲原子能谱; (b)N初级反冲原子的能谱; (c)B初级反冲原子的能谱; (d) C初级反冲原子的能谱

    Figure 9.  Primary recoils spectrum distribution for different neutron spectra for the primary recoil particle type of (a) Ga, (b) N, (c) B, (d) C.

    图 10  四种中子能谱在氮化镓中对应的加权初级初级反冲原子谱Wp(T)

    Figure 10.  Weighted primary recoil spectra of four neutron spectra in GaN.

    图 11  所研究中子能谱在氮化镓中对应的加权初级反冲原子谱Wp(T) (a) Ga加权初级反冲原子谱; (b) N加权初级反冲原子谱; (c) B加权初级反冲原子谱; (d) C加权初级反冲原子谱

    Figure 11.  Weighted primary recoil spectra of studied neutron spectra in GaN: (a) Ga; (b) N; (c) B; (d) C.

    表 1  不同能谱下初级反冲原子占比

    Table 1.  Primary recoils proportion of different spectrum.

    能谱初级反冲原子比例/%
    GaNCBHHeother
    大气中子52.3445.081.250.0321.260.0340.004
    压水堆54.2643.390.920.250.920.250.01
    高温气冷堆54.8743.620.520.230.520.230.01
    同位素堆48.2744.943.280.113.280.110.01
    DownLoad: CSV
    Baidu
  • [1]

    贾婉丽, 周淼, 王馨梅, 纪卫莉 2018 10 107102Google Scholar

    Jia W L, Zhou M, Wang X M, Ji W L 2018 Acta Phys. Sin. 10 107102Google Scholar

    [2]

    赵德刚, 周梅, 左淑华 2007 56 5513Google Scholar

    Zhao D G, Zuo S H, Zhou M 2007 Acta Phys. Sin. 56 5513Google Scholar

    [3]

    张力, 林志宇, 罗俊, 王树龙, 张进成, 郝跃, 戴扬, 陈大正, 郭立新 2017 66 247302Google Scholar

    Zhang L, Lin Z Y, Luo J, Wang S L, Zhang J C, Hao Y, Dai Y, Chen D Z, Guo L X 2017 Acta Phys. Sin. 66 247302Google Scholar

    [4]

    孙殿照 2000 物理 30 413

    Sun D Z 2000 Physics 30 413

    [5]

    Hadis Morkoç 2008 Handbook of Nitride Semiconductors and Devices (Weinheim: Wiley-VCH) pp1–129

    [6]

    Lorenz K, Marques J G, Franco N, Alves E, Peres M, Correia M R, Monteiro T 2008 Nucl. Instrum. Methods Phys. Res., Sect. B 266 2780

    [7]

    Kazukauskas V, Kalendra V, Vaitkus V 2006 Nucl. Instrum. Methods Phys. Res., Sect. A 568 421

    [8]

    Zhang M L, Wang X L, Xiao H L, Yang C B, Wang R 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology Shanghai, November 1–4, 2010 p1533

    [9]

    张得玺 2015 硕士学位论文 (西安: 西安电子科技大学)

    Zhang D X 2015 M. S. Thesis (Xi’an: Xidian University) (in Chinese)

    [10]

    吕玲2014 博士学位论文 (西安 西安电子科技大学)

    Lv L 2014 Ph.D. Thesis (Xi’an Xidian University)(in Chinese)

    [11]

    Wang R X, Xu S J, Li S, Fung S, Beling C D, Wang K, Wei Z F, Zhou T J, Zhang J D, Gong M, Pang G K H 2004 Conference on Optoelectronic and Microelectronic Materials and Devices Brisbane December 8–10 2004 p141

    [12]

    Wang R X, Xu S J, Fung S, Beling C D, Wang K, Li S, Wei Z F, Zhou T J, Zhang J D, Huang Y 2005 Appl. Phys. Lett. 87 031906

    [13]

    王园明, 陈伟, 郭红霞, 何宝平, 罗尹虹, 姚志斌, 张凤祁, 张科营, 赵雯 2010 原子能科学技术 44 1505

    Wang Y M, Cheng W, Guo H X, He B P, Luo Y H, Yao Z B, Zhang F Q, Zhang K Y, Zhao W 2010 Atom Energ. Sci. Technol. 44 1505

    [14]

    曾志, 李君利, 程建平, 邱睿 2005 同位素 18 55Google Scholar

    Zeng Z, LI J L, Cheng J P, Qiu R 2005 J. Isotop. 18 55Google Scholar

    [15]

    路伟, 王同权, 王兴功, 刘雪林 2011 核技术 34 529

    Lu W, Wang T Q, Wang X G, Liu X L 2011 Nucl. Technol. 34 529

    [16]

    Agostinelli S, Allison J, Amako K 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 506 250

    [17]

    申帅帅, 贺朝会, 李永宏 2018 67 182401Google Scholar

    Shen S S, He C H, Li Y H 2018 Acta Phys. Sin. 67 182401Google Scholar

    [18]

    Apostolakis J, Asai M, Bogdanoy A G 2009 Radiat. Phys. Chem. 78 859

    [19]

    何博文, 贺朝会, 申帅帅, 陈袁妙粱 2017 原子能科学技术 51 543Google Scholar

    He B W, He C H, Shen S S, Chen Y M L 2017 Atom Energ. Sci. Technol. 51 543Google Scholar

    [20]

    郭达禧, 贺朝会, 臧航, 席建奇, 马梨, 杨涛, 张鹏 2013 原子能科学技术 47 1222Google Scholar

    Guo D X, He C H, Zang H, Xi J Q, Ma L, Yang T, Zhang P 2013 Atom Energ Sci Technol 47 1222Google Scholar

    [21]

    胡志良, 杨卫涛, 李永宏, 李洋, 贺朝会, 王松林, 周斌, 于全芝, 何欢, 谢飞, 白雨蓉, 梁天骄 2019 68 238502Google Scholar

    Hu Z L, Yang W T, Li Y H, Li Y, He C H, Wang S L, Zhou B, Yu Q Z, He H, Xie F, Bai Y R, Liang T J 2019 Acta Phys. Sin. 68 238502Google Scholar

    [22]

    Was GS. 2007 Fundamentals of Radiation Materials Science: Metals and Alloys (Berlin: Springer) pp545–577

    [23]

    Hu J W, Hayes A C, Wilson W B, Rizwan U 2010 Nucl. Eng Des 240 3751

    [24]

    Robinson M T, Torrens I M 1974 Phys. Rev. B 9 5008

    [25]

    Akkerman A, Barak J 2006 Proc. IEEE Trans. Nucl. Sci. 53 3667

    [26]

    Detlef F, Frank G 2009 Handbook of Spallation Research: Theory, Experiments and Applications (Berlin, Wiley-VCG) pp220-224

    [27]

    杨福家, 王炎森, 陆福全 2002 原子核物理 (第2版) (上海: 复旦大学出版社) 第153页

    Yang F J, Wang Y S, Lu F Q 2002 Nuclear Physics (Vol.2) (Shanghai: Fudan University Press) p153 (in Chinese)

    [28]

    Wiedersich H 1990 Radiat. Eff. and Defects. Solids 113 97

    [29]

    Mota F, Vila R, Ortiz C, Garcia A, Casal N, Ibarra A, Rapisarda D, Queral V 2011 Fusion Eng. Des. 86 2425

  • [1] Bai Yu-Rong, Li Pei, He Huan, Liu Fang, Li Wei, He Chao-Hui. Simulation of displacement damage of InP induced by protons and α-particles in low Earth orbit. Acta Physica Sinica, 2024, 73(5): 052401. doi: 10.7498/aps.73.20231499
    [2] Yang Wei-Tao, Wu Yi-Chen, Xu Rui-Ming, Shi Guang, Ning Ti, Wang Bin, Liu Huan, Guo Zhong-Jie, Yu Song-Lin, Wu Long-Sheng. Geant4 simulation of Hg1–xCdxTe infrared focal plane array image sensor space proton displacement damage and total ionizing dose effects. Acta Physica Sinica, 2024, 73(23): 232402. doi: 10.7498/aps.73.20241246
    [3] Liu Qing-Bin, Yu Cui, Guo Jian-Chao, Ma Meng-Yu, He Ze-Zhao, Zhou Chuang-Jie, Gao Xue-Dong, Yu Hao, Feng Zhi-Hong. Influence of polycrystalline diamond on silicon-based GaN material. Acta Physica Sinica, 2023, 72(9): 098104. doi: 10.7498/aps.72.20221942
    [4] Lei Zhen-Shuai, Sun Xiao-Wei, Liu Zi-Jiang, Song Ting, Tian Jun-Hong. Phase diagram prediction and high pressure melting characteristics of GaN. Acta Physica Sinica, 2022, 71(19): 198102. doi: 10.7498/aps.71.20220510
    [5] Yuan Ying-Kuo, Guo Wei-Ling, Du Zai-Fa, Qian Feng-Song, Liu Ming, Wang Le, Xu Chen, Yan Qun, Sun Jie. Applications of graphene transistor optimized fabrication process in monolithic integrated driving gallium nitride micro-light-emitting diode. Acta Physica Sinica, 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [6] Han Rui-Long, Cai Ming-Hui, Yang Tao, Xu Liang-Liang, Xia Qing, Han Jian-Wei. Mechanism of cosmic ray high-energy particles charging test mass. Acta Physica Sinica, 2021, 70(22): 229501. doi: 10.7498/aps.70.20210747
    [7] Bai Yu-Rong, Li Yong-Hong, Liu Fang, Liao Wen-Long, He Huan, Yang Wei-Tao, He Chao-Hui. Simulation of displacement damage in indium phosphide induced by space heavy ions. Acta Physica Sinica, 2021, 70(17): 172401. doi: 10.7498/aps.70.20210303
    [8] Liao Jian-Hong,  Zeng Qun,  Yuan Mao-Hui. Competition between different nonlinear optical effects of GaN-based thin-film semiconductors. Acta Physica Sinica, 2018, 67(23): 236101. doi: 10.7498/aps.67.20181347
    [9] Zhou Xing-Ye, Lv Yuan-Jie, Tan Xin, Wang Yuan-Gang, Song Xu-Bo, He Ze-Zhao, Zhang Zhi-Rong, Liu Qing-Bin, Han Ting-Ting, Fang Yu-Long, Feng Zhi-Hong. Mechanisms of trapping effects in short-gate GaN-based high electron mobility transistors with pulsed I-V measurement. Acta Physica Sinica, 2018, 67(17): 178501. doi: 10.7498/aps.67.20180474
    [10] Shen Shuai-Shuai, He Chao-Hui, Li Yong-Hong. Non-ionization energy loss of proton in different regions in SiC. Acta Physica Sinica, 2018, 67(18): 182401. doi: 10.7498/aps.67.20181095
    [11] Tang Wen-Hui, Liu Bang-Wu, Zhang Bo-Cheng, Li Min, Xia Yang. Low temperature depositions of GaN thin films by plasma-enhanced atomic layer deposition. Acta Physica Sinica, 2017, 66(9): 098101. doi: 10.7498/aps.66.098101
    [12] He Ju-Sheng, Zhang Meng, Pan Hua-Qing, Zou Ji-Jun, Qi Wei-Jing, Li Ping. Determination of dislocation density of a class of n-GaN based on the variable temperature Hall-effect method. Acta Physica Sinica, 2017, 66(6): 067201. doi: 10.7498/aps.66.067201
    [13] Yao Zhi-Ming, Duan Bao-Jun, Song Gu-Zhou, Yan Wei-Peng, Ma Ji-Ming, Han Chang-Cai, Song Yan. A method of evaluating the relative light yield of ST401 irradiated by pulsed neutron. Acta Physica Sinica, 2017, 66(6): 062401. doi: 10.7498/aps.66.062401
    [14] Jia Qing-Gang, Zhang Tian-Kui, Xu Hai-Bo. Optimization design of a Gamma-to-electron spectrometer for high energy gammas induced by fusion. Acta Physica Sinica, 2017, 66(1): 010703. doi: 10.7498/aps.66.010703
    [15] Huang Bin-Bin, Xiong Chuan-Bing, Tang Ying-Wen, Zhang Chao-Yu, Huang Ji-Feng, Wang Guang-Xu, Liu Jun-Lin, Jiang Feng-Yi. Changes of stress and luminescence properties in GaN-based LED films before and after transferring the films to a flexible layer on a submount from the silicon epitaxial substrate. Acta Physica Sinica, 2015, 64(17): 177804. doi: 10.7498/aps.64.177804
    [16] Liu Mu-Lin, Min Qiu-Ying, Ye Zhi-Qing. Efficiency droop in blue InGaN/GaN light emitting diodes on Si substrate. Acta Physica Sinica, 2012, 61(17): 178503. doi: 10.7498/aps.61.178503
    [17] Li Shui-Qing, Wang Lai, Han Yan-Jun, Luo Yi, Deng He-Qing, Qiu Jian-Sheng, Zhang Jie. A new growth method of roughed p-GaN in GaN-based light emitting diodes. Acta Physica Sinica, 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [18] Qin Xiao-Gang, He De-Yan, Wang Ji. Geant 4-based calculation of electric field in deep dielectric charging. Acta Physica Sinica, 2009, 58(1): 684-689. doi: 10.7498/aps.58.684
    [19] Shen Guang-Di, Zhang Jian-Ming, Zou De-Shu, Xu Chen, Gu Xiao-Ling. Research on effects of current spreading and optimized contact scheme for high-power GaN-based light-emitting diodes. Acta Physica Sinica, 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [20] Liu Nai-Xin, Wang Huai-Bing, Liu Jian-Ping, Niu Nan-Hui, Han Jun, Shen Guang-Di. Growth of p-GaN at low temperature and its properties as light emitting diodes. Acta Physica Sinica, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
Metrics
  • Abstract views:  9235
  • PDF Downloads:  265
  • Cited By: 0
Publishing process
  • Received Date:  10 January 2020
  • Accepted Date:  19 June 2020
  • Available Online:  19 June 2020
  • Published Online:  05 October 2020

/

返回文章
返回
Baidu
map