-
本文将硅(Si)衬底上外延生长的氮化镓(GaN)基发光二极管(LED)薄膜转移至含有柔性黏结层的基板上, 获得了不受衬底和支撑基板束缚的LED薄膜. 利用高分辨率X射线衍射仪(HRXRD)研究了薄膜转移前后的应力变化, 同时对其光致发光(PL)光谱的特性进行了研究. 结果表明: 硅衬底GaN基LED薄膜转移至柔性基板后, GaN受到的应力会由转移前巨大的张应力变为转移后微小的压应力, InGaN/GaN量子阱受到的压应力则增大; 尽管LED薄膜室温无损转移至柔性基板其InGaN阱层的In组分不会改变, 然而按照HRXRD倒易空间图谱通用计算方法会得出平均铟组发生了变化; GaN基LED薄膜从外延片转移至柔性基板时其PL谱会发生明显红移.Due to the lack of GaN substrates, hetero-epitaxial growth of GaN thin films is usually carried out on a foreign substrate. There are three kinds of substrate for GaN: sapphire, silicon carbide, and silicon; the sapphire substrate is the chief one, currently. Due to the availability of large scale and low cost of Si substrates, in recent years, extensive research has been devoted to the development of gallium nitride (GaN) optoelectronic devices on silicon substrates. Because of the large lattice mismatch and thermal-expansion cofficient difference between Si and GaN, it is difficult to grow thick enough crack-free GaN LED film on Si substrates. The two main kinds of methods for overcoming the crack problem are using the patterned Si substate and the thick AlGaN buffer layer. Although the two techniques could solve the problem of crack by cooling after growth, they will lead to an increase in tensile stress for GaN on Si. When making vertical-structured LED devices by transferring the GaN-based LED thin films from Si substrate to a new submount, this tensile stress will be partially released; but few researches have been made about the stress change before and after the transfer of the film, although the stress in GaN is an important factor that alters the energy band structure and may influence the vibrational properties. In this paper, we grow the crack-free GaN-based LED films on patterned Si(111), then light-emitting diode (LED) thin films are successfully transferred from the original Si (111) substrate to the submount with a flexible layer, and then the LED films without the influence of the submount and substrate are fabricated. In the following experiments, the strain-stress variation of the LED film is determined by using nondestructive high resolution X-ray diffraction (HRXRD) in detail, and the variation of photoluminescence (PL) properties of the film is studied too. Results obtained are as follows: 1) When the LED film is transferred to the flexible submount, the huge tensile stress will turn into compressive stress, and the latter in the InGaN layers will increase. 2) The In concentration in the (InGaN/GaN) MQW (multi-quantum well) systems can be evaluated with the help of reciprocal space maps (RSM) around the symmetric (0002) and asymmetric (1015) Bragg reflections. The In concentration in (InGaN/GaN) MQW will reduce when the GaN-based LED film is transferred to the flexible submount. 3) The PL spectra of the LED films will obviously appear red shift, after they are transferred to the flexible submount.
-
Keywords:
- GaN /
- flexible submount /
- reciprocal space map /
- photoluminescence
[1] McCluskey M D, Van de Walle C G, Master C P, Romano L T, Johnson N M 1998 Appl. Phys. Lett. 72 2725
[2] Taniyasu Y, Kasu M, Makimoto T 2006 Nature 441 325
[3] Pereira S, Correia M R, Monteiro T, Pereira E, Alves E, Sequeira A D, Franco N 2001 Appl. Phys. Lett. 78 2137
[4] Kong H S, James I, Edmond J 2014 Phys. Status Solidi C 11 621
[5] Okuno K, Oshio T, Shibata N, Honda Y, Yamaguchi M, Amano H 2014 Phys. Status Solidi C 11 722
[6] Tang J J, Liang T, Shi W L, Zhang Q Q, Wang Y, Liu J, Xiong J J 2011 Appl. Surf. Sci. 257 8846
[7] Perlin P, Mattos L, Shapiro N A, Kruger J, Wong W S, Sands T, Cheung N W, Weber E R 1999 J. Appl. Phys. 85 2385
[8] Li Y L, Huang Y R, Lai Y H 2007 Appl. Phys. Lett. 91 181113
[9] Huang B B, Xiong C B, Zhang C Y, Huang J F, Wang G X, Tang Y W, Quan Z J, Xu L Q, Zhang M, Wang L, Fang W Q, Liu J L, Jiang F Y 2014 Acta Phys. Sin. 63 217806 (in Chinese) [黄斌斌, 熊传兵, 张超宇, 黄基锋, 王光绪, 汤英文, 全知觉, 徐龙权, 张萌, 王立, 方文卿, 刘军林, 江风益 2014 63 217806]
[10] Park J, Goto T, Yao T, Lee S, Cho M 2013 J. Phys. D: Appl. Phys. 46 155104
[11] Zhao D G, Xu S J, Xie M H, Tong S Y, Hui Y 2003 Appl. Phys. Lett. 83 677
[12] Wong W S, Sands T, Cheung N W, Kneissl M, Bour D P, Mei P, Romano L T, Johnson N M 1999 Appl. Phys. Lett. 75 1360
[13] Stach E A, Kelsch M, Nelson E, Wong W S, Sands T, Cheung N W 2000 Appl. Phys. Lett. 77 1819
[14] Mo C L, Fang W Q, Pu Y, Liu H C, Jiang F 2005 J. Cryst. Growth 285 312
[15] Xiong C B, Jiang F Y, Fang W Q, Wang L, Mo C L 2008 Acta Phys. Sin. 57 3176 (in Chinese) [熊传兵, 江风益, 方文卿, 王立, 莫春兰 2008 57 3176]
[16] Xiong Y J, Zhang M, Xiong C B, Xiao Z H, Wang G X, Wang Y M, Jiang F Y 2010 Chin. J. Lumin. 31 531 (in Chinese) [熊贻婧, 张萌, 熊传兵, 肖宗湖, 王光绪, 汪延明, 江风益 2010 发光学报 31 531]
[17] Moram M A, Vickers M E 2009 Rep. Prog. Phys. 72 036502
[18] Paszkowicz W 1999 Powder Diffr. 14 258
[19] Ishikawa H, Zhao G Y, Nakada N, Egawa T, Jimbo T, Umeno M 1999 Jpn. J. Appl. Phys. 38 L492
[20] Bläsing J, Reiher A, Dadgar A, Diez A, Krost A 2002 Appl. Phys. Lett. 81 2722
[21] Wu M F, Zhou S Q, Yao S D, Zhao Q, Vantomme A 2004 J. Vac. Sci. Technol. B 22 921
[22] Roesener T, Klinger V, Weuffen C, Lackner D, Dimroth F 2013 J. Cryst. Growth 368 21
[23] Dobrovolskas D, Vaitkevičius A, Mickevičius J, Tuna Ö, Giesen C, Heuken M, Tamulaitis G 2013 J. Appl. Phys. 114 163516
[24] Pereira S, Correia M R, Pereira E, O'Donnell K P, Alves E, Sequeira A D, Franco N, Watson I M, Deatcher C J 2002 Appl. Phys. Lett. 80 3913
[25] Detchprohm T, Hiramatsu K, Itoh K, Akasaki I 1992 Jpn. J. Appl. Phys. 31 L1454
[26] Wright A F 1997 J. Appl. Phys. 82 2833
[27] Wu M, Zhang B S, Chen J, Liu J P, Shen X M, Zhao D G, Zhang J C, Wang J F, Li N, Jin R Q, Zhu J J, Yang H 2004 J. Cryst. Growth 260 331
[28] Tawfik W Z, Song J, Lee J J, Ha J S, Ryu S W, Choi H S, Ryu B, Lee J K 2013 Appl. Surf. Sci. 283 727
-
[1] McCluskey M D, Van de Walle C G, Master C P, Romano L T, Johnson N M 1998 Appl. Phys. Lett. 72 2725
[2] Taniyasu Y, Kasu M, Makimoto T 2006 Nature 441 325
[3] Pereira S, Correia M R, Monteiro T, Pereira E, Alves E, Sequeira A D, Franco N 2001 Appl. Phys. Lett. 78 2137
[4] Kong H S, James I, Edmond J 2014 Phys. Status Solidi C 11 621
[5] Okuno K, Oshio T, Shibata N, Honda Y, Yamaguchi M, Amano H 2014 Phys. Status Solidi C 11 722
[6] Tang J J, Liang T, Shi W L, Zhang Q Q, Wang Y, Liu J, Xiong J J 2011 Appl. Surf. Sci. 257 8846
[7] Perlin P, Mattos L, Shapiro N A, Kruger J, Wong W S, Sands T, Cheung N W, Weber E R 1999 J. Appl. Phys. 85 2385
[8] Li Y L, Huang Y R, Lai Y H 2007 Appl. Phys. Lett. 91 181113
[9] Huang B B, Xiong C B, Zhang C Y, Huang J F, Wang G X, Tang Y W, Quan Z J, Xu L Q, Zhang M, Wang L, Fang W Q, Liu J L, Jiang F Y 2014 Acta Phys. Sin. 63 217806 (in Chinese) [黄斌斌, 熊传兵, 张超宇, 黄基锋, 王光绪, 汤英文, 全知觉, 徐龙权, 张萌, 王立, 方文卿, 刘军林, 江风益 2014 63 217806]
[10] Park J, Goto T, Yao T, Lee S, Cho M 2013 J. Phys. D: Appl. Phys. 46 155104
[11] Zhao D G, Xu S J, Xie M H, Tong S Y, Hui Y 2003 Appl. Phys. Lett. 83 677
[12] Wong W S, Sands T, Cheung N W, Kneissl M, Bour D P, Mei P, Romano L T, Johnson N M 1999 Appl. Phys. Lett. 75 1360
[13] Stach E A, Kelsch M, Nelson E, Wong W S, Sands T, Cheung N W 2000 Appl. Phys. Lett. 77 1819
[14] Mo C L, Fang W Q, Pu Y, Liu H C, Jiang F 2005 J. Cryst. Growth 285 312
[15] Xiong C B, Jiang F Y, Fang W Q, Wang L, Mo C L 2008 Acta Phys. Sin. 57 3176 (in Chinese) [熊传兵, 江风益, 方文卿, 王立, 莫春兰 2008 57 3176]
[16] Xiong Y J, Zhang M, Xiong C B, Xiao Z H, Wang G X, Wang Y M, Jiang F Y 2010 Chin. J. Lumin. 31 531 (in Chinese) [熊贻婧, 张萌, 熊传兵, 肖宗湖, 王光绪, 汪延明, 江风益 2010 发光学报 31 531]
[17] Moram M A, Vickers M E 2009 Rep. Prog. Phys. 72 036502
[18] Paszkowicz W 1999 Powder Diffr. 14 258
[19] Ishikawa H, Zhao G Y, Nakada N, Egawa T, Jimbo T, Umeno M 1999 Jpn. J. Appl. Phys. 38 L492
[20] Bläsing J, Reiher A, Dadgar A, Diez A, Krost A 2002 Appl. Phys. Lett. 81 2722
[21] Wu M F, Zhou S Q, Yao S D, Zhao Q, Vantomme A 2004 J. Vac. Sci. Technol. B 22 921
[22] Roesener T, Klinger V, Weuffen C, Lackner D, Dimroth F 2013 J. Cryst. Growth 368 21
[23] Dobrovolskas D, Vaitkevičius A, Mickevičius J, Tuna Ö, Giesen C, Heuken M, Tamulaitis G 2013 J. Appl. Phys. 114 163516
[24] Pereira S, Correia M R, Pereira E, O'Donnell K P, Alves E, Sequeira A D, Franco N, Watson I M, Deatcher C J 2002 Appl. Phys. Lett. 80 3913
[25] Detchprohm T, Hiramatsu K, Itoh K, Akasaki I 1992 Jpn. J. Appl. Phys. 31 L1454
[26] Wright A F 1997 J. Appl. Phys. 82 2833
[27] Wu M, Zhang B S, Chen J, Liu J P, Shen X M, Zhao D G, Zhang J C, Wang J F, Li N, Jin R Q, Zhu J J, Yang H 2004 J. Cryst. Growth 260 331
[28] Tawfik W Z, Song J, Lee J J, Ha J S, Ryu S W, Choi H S, Ryu B, Lee J K 2013 Appl. Surf. Sci. 283 727
计量
- 文章访问数: 7292
- PDF下载量: 258
- 被引次数: 0