Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multi beam hybrid heterodyne interferometry based phase enhancement technology

Kong Xin-Xin Zhang Wen-Xi Cai Qi-Sheng Wu Zhou Dai Yu Xiang Li-Bin

Citation:

Multi beam hybrid heterodyne interferometry based phase enhancement technology

Kong Xin-Xin, Zhang Wen-Xi, Cai Qi-Sheng, Wu Zhou, Dai Yu, Xiang Li-Bin
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Laser Doppler vibrometer can measure the displacement, velocity, acceleration and other parameters of vibration target. It has the characteristics of non-contact, high precision and long distance. So, it has a great advantage for the vibration measurement in a special working environment, where the target is light and thin, hard to contact, hard to approach. Laser heterodyne interferometry is an important means of detecting the micro vibration. With the development of micro vibration application, the sensitivity of phase measurement is highly required. Traditionally, there are several ways of improving the measurement sensitivity, such as optimizing the heterodyne interference scheme, improving the phase reconstruction algorithm and reducing the noise of key devices and so on. However, based on the analysis of the influence of stray light in the system, it is found that the controllable multi-beam interference can greatly improve the detection capability of the system. Therefore, a phase enhancement technique of multi-beam hybrid interference is proposed to meet the needs of high sensitivity detection of micro vibration. In this paper the physical mechanism and boundary conditions of phase enhancement are investigated in detail, and the quantitative relationship between the boundary conditions and phase enhancement is also analyzed thereby providing a technical reference for the enhancement detection of micro vibration targets. Through the numerical simulation and experimental verification, the following boundary conditions are obtained: the initial phase difference between the correction light and the signal light is π rad and the closer the power values of the two beams, the greater the enhancement effect of the demodulation phase is. The power difference between the two beams designed in the experiment is 1%, which means that detection capability is enhanced by 146 times. It has great application value in the high sensitivity measurement of micro vibration objects. This technology can also enhance the detection capability of heterodyne interference measurement system without changing the existing device index or phase demodulation algorithm.
      Corresponding author: Zhang Wen-Xi, zhangwenxi@aoe.ac.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61605217)
    [1]

    Castellini P 2006 Mech. Syst. Signal Pr. 20 1265Google Scholar

    [2]

    George W.K., Lumley J.L 1973 Fluid Mech. 60 321Google Scholar

    [3]

    Sriram, S. Hanagud, J. I. 1992 Modal Anal. 7 169

    [4]

    Baker J R, Laming R I, Wilmshurst T H 1990 Opt. Laser Technol. 22 4 241

    [5]

    Brunet A R, Turon P, Lacoste F. A 1985 Proc. SPIE Optics in Engineering Measurement 599 391

    [6]

    Kong X X, Xiang L B, Zhang W X, Wu Z, Zhang D D 2019 Proc. SPIE Security Defence 111600 1

    [7]

    Yuichi F, Daisuke, Tomohiro K, ToyohikoY 2010 Opt. Lett. 35 101548

    [8]

    贺寅竹, 赵世杰, 尉昊赟, 李岩 2017 66 060601Google Scholar

    He Y Z, Zhao S J, Wei H Y, Li Y 2017 Acta Phys. Sin. 66 060601Google Scholar

    [9]

    Jackson D A, Posada-Roman J E, Garcia-Souto J A 2015 Ele. Lett. 51 1100Google Scholar

    [10]

    Aranchuk V, Aranchuk I, Carpenter B, Hickey C 2019 OSA Laser Con. 4 1

    [11]

    Li Y L, et al. 2018 OSA CLEO 5 1

    [12]

    杜军, 杨娜, 李峻灵, 曲彦臣, 李世明, 丁云鸿, 李锐 2018 67 064204Google Scholar

    Du J, Yang N, Li J L, Qu Y C, Li S M, Ding Y H, Li R 2018 Acta Phys. Sin. 67 064204Google Scholar

    [13]

    刘亚睿 2016 硕士学位论文 (杭州: 中国计量大学)

    Liu Y R 2016 M. S. Thesis (Hangzhou: China Jiliang University) (in Chinese)

    [14]

    党文佳 2015 博士学位论文 (西安: 西安电子科技大学)

    Dang W J 2015 Ph. D. Dissertation (Xian: Xidian Univeristy) (in Chinese)

    [15]

    Ken Y, Fumiya N 2017 Micro. opt. Conference 1 48

    [16]

    赵金龙 2016 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Zhao J L 2016 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [17]

    Hossam K, Dongkyu K, Joonsik N, Kyihwan P 2016 Measurement 94 883Google Scholar

    [18]

    伍洲, 张文喜, 相里斌, 李杨, 孔新新 2018 67 020601Google Scholar

    Wu Z, Zhang W X, Xiang L B, Li Y, Kong X X 2018 Acta Phys. Sin. 67 020601Google Scholar

    [19]

    晏春回, 王挺峰, 张合勇, 吕韬, 吴世松 2017 66 234208Google Scholar

    Yan C H, Wang T F, Zhang H Y, Lv T, Wu S S 2017 Acta Phys. Sin. 66 234208Google Scholar

    [20]

    Paul K, Flügge J, Weichert C 2012 Meas. Sci. Technol. 25 1

    [21]

    Cheng Z G 2006 Appl. Opt. 45 2246Google Scholar

    [22]

    Lawall J 2000 Rev. of Sci. Instr. 71 2669Google Scholar

    [23]

    Hu P C. 2017 Opt. Exp. 25 3605Google Scholar

    [24]

    Yaravoi L, Siegmund G 2004 Meas. Sci. Technol. 15 2150Google Scholar

  • 图 1  典型激光外差干涉测振系统

    Figure 1.  Typical laser heterodyne interference vibration measurement system.

    图 2  杂散光对解调振幅的影响

    Figure 2.  Influence of stray light on demodulation amplitude.

    图 3  杂散光功率对解调振幅的影响曲线

    Figure 3.  Influence curve of stray light power on demodulation amplitude.

    图 4  杂散光初相位对解调振幅的影响曲线

    Figure 4.  Influence curve of initial phase of stray light on demodulation amplitude.

    图 5  三波混合干涉外差干涉测振系统

    Figure 5.  Three-wave hybrid interference heterodyne interference vibration measurement system.

    图 6  三光束外差探测实验结构

    Figure 6.  Experimental structure of three-wave heterodyne detection.

    图 7  无校正光下两光束干涉实验数据

    Figure 7.  Interference data without corrected light.

    图 8  三光束混合干涉试验数据

    Figure 8.  Three-wave mixed interference data.

    图 9  试验数据拉伸显示

    Figure 9.  Test data tensile display

    Baidu
  • [1]

    Castellini P 2006 Mech. Syst. Signal Pr. 20 1265Google Scholar

    [2]

    George W.K., Lumley J.L 1973 Fluid Mech. 60 321Google Scholar

    [3]

    Sriram, S. Hanagud, J. I. 1992 Modal Anal. 7 169

    [4]

    Baker J R, Laming R I, Wilmshurst T H 1990 Opt. Laser Technol. 22 4 241

    [5]

    Brunet A R, Turon P, Lacoste F. A 1985 Proc. SPIE Optics in Engineering Measurement 599 391

    [6]

    Kong X X, Xiang L B, Zhang W X, Wu Z, Zhang D D 2019 Proc. SPIE Security Defence 111600 1

    [7]

    Yuichi F, Daisuke, Tomohiro K, ToyohikoY 2010 Opt. Lett. 35 101548

    [8]

    贺寅竹, 赵世杰, 尉昊赟, 李岩 2017 66 060601Google Scholar

    He Y Z, Zhao S J, Wei H Y, Li Y 2017 Acta Phys. Sin. 66 060601Google Scholar

    [9]

    Jackson D A, Posada-Roman J E, Garcia-Souto J A 2015 Ele. Lett. 51 1100Google Scholar

    [10]

    Aranchuk V, Aranchuk I, Carpenter B, Hickey C 2019 OSA Laser Con. 4 1

    [11]

    Li Y L, et al. 2018 OSA CLEO 5 1

    [12]

    杜军, 杨娜, 李峻灵, 曲彦臣, 李世明, 丁云鸿, 李锐 2018 67 064204Google Scholar

    Du J, Yang N, Li J L, Qu Y C, Li S M, Ding Y H, Li R 2018 Acta Phys. Sin. 67 064204Google Scholar

    [13]

    刘亚睿 2016 硕士学位论文 (杭州: 中国计量大学)

    Liu Y R 2016 M. S. Thesis (Hangzhou: China Jiliang University) (in Chinese)

    [14]

    党文佳 2015 博士学位论文 (西安: 西安电子科技大学)

    Dang W J 2015 Ph. D. Dissertation (Xian: Xidian Univeristy) (in Chinese)

    [15]

    Ken Y, Fumiya N 2017 Micro. opt. Conference 1 48

    [16]

    赵金龙 2016 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Zhao J L 2016 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [17]

    Hossam K, Dongkyu K, Joonsik N, Kyihwan P 2016 Measurement 94 883Google Scholar

    [18]

    伍洲, 张文喜, 相里斌, 李杨, 孔新新 2018 67 020601Google Scholar

    Wu Z, Zhang W X, Xiang L B, Li Y, Kong X X 2018 Acta Phys. Sin. 67 020601Google Scholar

    [19]

    晏春回, 王挺峰, 张合勇, 吕韬, 吴世松 2017 66 234208Google Scholar

    Yan C H, Wang T F, Zhang H Y, Lv T, Wu S S 2017 Acta Phys. Sin. 66 234208Google Scholar

    [20]

    Paul K, Flügge J, Weichert C 2012 Meas. Sci. Technol. 25 1

    [21]

    Cheng Z G 2006 Appl. Opt. 45 2246Google Scholar

    [22]

    Lawall J 2000 Rev. of Sci. Instr. 71 2669Google Scholar

    [23]

    Hu P C. 2017 Opt. Exp. 25 3605Google Scholar

    [24]

    Yaravoi L, Siegmund G 2004 Meas. Sci. Technol. 15 2150Google Scholar

Metrics
  • Abstract views:  7205
  • PDF Downloads:  121
  • Cited By: 0
Publishing process
  • Received Date:  25 February 2020
  • Accepted Date:  07 June 2020
  • Available Online:  15 June 2020
  • Published Online:  05 October 2020

/

返回文章
返回
Baidu
map