Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Transport performance of coupled Brownian particles in rough ratchet

Liu Chen-Hao Liu Tian-Yu Huang Ren-Zhong Gao Tian-Fu Shu Yao-Gen

Citation:

Transport performance of coupled Brownian particles in rough ratchet

Liu Chen-Hao, Liu Tian-Yu, Huang Ren-Zhong, Gao Tian-Fu, Shu Yao-Gen
PDF
HTML
Get Citation
  • Molecular motor is a kind of protein macromolecule, which moves along the microfilament or microtubule in cell directionally and participates in all kinds of intracellular life activities fully. In order to study the directional motion of molecular motor, a series of ratchet models have been proposed. However, the potentials used in most of the ratchet models are smooth sawtooth potential or harmonic potential. Recently, the experimental studies show that intracellular impurities, spatial inhomogeneity or the folding process of protein can yield deviation from a smooth ratchet profile. This kind of deviation will roughen the known smooth potential. In fact, the roughness of potential is not only closely related to the properties of protein, but also has an important implication in transition rate. Therefore, the rough ratchet will be used to simulate the interaction between molecular motor and trajectory in this work. In addition, experimental researches show that there is a class of molecular motor that can move directionally without dragging load in organism. According to the theory presented by Wang and Oster (Wang H, Oster G 2002 Europhys. Lett. 57 134), the directional transport capability of this kind of motor can be investigated by means of Stokes efficiency. The higher the Stokes efficiency of the motor, the stronger the ability of the motor to use external input energy for directional motion.Here in this work, the overdamped Brownian transport of the two harmonically interacting particles is investigated, and the performance of transport is analyzed by studying the mean velocity and Stokes efficiency of the dimer induced by the introduction of roughness into the potential profile. The influences of the amplitude of perturbation, the wavenumber, the coupling strength and the free length of coupled Brownian particles on the directional transport performance are discussed in detail. According to the structure of ratchet, it is found that the roughness can either restrain or enhance the ratchet performance. It is shown that the appropriate amplitude and wavenumber of rough ratchet can promote the directional transport and enhance the Stokes efficiency of coupled Brownian particles. Moreover, one can distinguish between the optimal value of the coupling strength and free length that leads to a local maximum current. In addition, the directional transport of rough ratchet can be reversed by modulating the suitable coupling strength and free length. The conclusions obtained in this paper can provide theoretical guidance for understanding the motion behavior of molecular motor in experiment, and can also provide experimental inspiration for developing the nanometer machines and realizing the particle separation technology.
      Corresponding author: Gao Tian-Fu, tianfugao@synu.edu.cn ; Shu Yao-Gen, shuyg@itp.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574329, 11774358, 11347003), the Key Research Program of Frontier Sciences of CAS (Grant No. Y7Y1472Y61), the CAS Biophysics Interdisciplinary Innovation Team Project (Grant No. 2060299), the Strategic Priority Research Program (A) of CAS (Grant No. XDA17010504), and the Natural Science Foundation of Liaoning Province, China (Grant No. 20180550149)
    [1]

    Xie P 2010 Int. J. Biol. Sci. 6 665

    [2]

    黎明, 欧阳钟灿, 舒咬根 2016 18 188702Google Scholar

    Li M, Ouyang Z C, Shu Y G 2016 Acta Phys. Sin. 18 188702Google Scholar

    [3]

    郭晓强 2019 自然杂志 41 56

    Guo X Q 2019 Chin. J. Nat. 41 56

    [4]

    Allen R D, Metuzals J, Tasahi I, Brady S T, Gilbert S P 1982 Science 218 1127Google Scholar

    [5]

    Vale R D, Schnapp B J, Reese T S, Sheetz M P 1985 Cell 40 449Google Scholar

    [6]

    Vale R D, Reese T S, Sheetz M P 1985 Cell 42 39Google Scholar

    [7]

    Dey K K, Zhao X, Tansi B M, Mendez-Ortiz W J, Cordova-Figueroa U M, Golestanian R, Sen A 2015 Nano Lett. 15 8311Google Scholar

    [8]

    Nara Y, Niemi H, Steinheimer J, Stöcker H 2017 Phys. Lett. B 769 543

    [9]

    Mateos J L, Arzola A V, Volke-Seplveda K 2011 Phys. Rev. Lett. 106 168104Google Scholar

    [10]

    Minucci S, Pelicci P G 2006 Nat. Rev. Cancer 6 38Google Scholar

    [11]

    Palmigiano A, Santaniello F, Cerutti A, Penkov D, Pu-rushothama D 2018 Sci. Rep. 8 3198Google Scholar

    [12]

    Linke H 2002 Appl. Phys. A 75 167Google Scholar

    [13]

    Van den Heuvel M G L, Dekker C 2007 Science 317 333Google Scholar

    [14]

    Zhang H W, Wen S T, Zhang H T, Li Y X, Chen G R 2012 Chin. Phys. B 21 078701Google Scholar

    [15]

    Doering C R 1995 Nuovo Cimento 17 685Google Scholar

    [16]

    Astumian R D, Bier M 1994 Phys. Rev. Lett. 72 1766Google Scholar

    [17]

    Gao T F, Chen J C 2009 J. Phys. A: Math. Theor. 42 065002Google Scholar

    [18]

    Krishnan R, Chacko J, Sahoo M, Jayannavar A M 2006 J. Stat. Mech.: Theory Exp. 2006 P06017

    [19]

    Wang H Y, Bao J D 2013 Physica A 392 4850

    [20]

    Li P C, Chen H B, Fan H, Shen W M, Zheng Z G 2017 J. Phys. A: Math. Theor. 50 475003Google Scholar

    [21]

    延明月, 张旭, 刘晨昊, 黄仁忠, 高天附, 郑志刚 2018 67 190501Google Scholar

    Yan M Y, Zhang X, Liu C H, Huang R Z, Gao T F, Zheng Z G 2018 Acta Phys. Sin. 67 190501Google Scholar

    [22]

    Camargo S, Anteneodo C 2018 Physica A 495 114Google Scholar

    [23]

    Frauenfelder H, Sligar S G, Wolynes P G 1991 Science 254 1598Google Scholar

    [24]

    Frauenfelder H, Wolynes P G, Austin R H 1999 Rev. Mod. Phys. 71 S419Google Scholar

    [25]

    Zwanzig R 1988 Proc. Natl. Acad. Sci. U.S.A. 85 2029Google Scholar

    [26]

    Marchesoni F 1997 Phys. Rev. E 56 2492Google Scholar

    [27]

    Parrondo J M R, Cisneros B J D 2002 Physics A 75 179

    [28]

    Wang H, Oster G 2002 Europhys. Lett. 57 134Google Scholar

    [29]

    Sekimoto K 1997 J. Phys. Soc. Jpn. 66 1234Google Scholar

    [30]

    Ai B Q, Xie H Z, Liao H Y, Liu L G 2006 J. Stat. Mech.: Theory Exp. 2006 P09016

    [31]

    Gehlen S V, Evstigneev M, Reimann P 2009 Phys. Rev. E 79 031114Google Scholar

    [32]

    Ai B Q, Zhong W R 2011 Phys. Rev. E 83 051106Google Scholar

  • 图 1  (a) 粗糙势$U\left( x \right)$随扰动振幅$\varepsilon $的变化, 其中扰动波数$H \!=\! 5$; (b) 粗糙势$U\left( x \right)$随扰动波数H的变化, 其中扰动振幅$\varepsilon \!=\! 0.1$

    Figure 1.  (a) Diagram of the rough potential $U\left( x \right)$ varying with the amplitude of perturbation $\varepsilon $, where perturbed wavenumber $H = 5$; (b) diagram of the rough potential $U\left( x \right)$ varying with perturbed wavenumber H, where the perturbation amplitude $\varepsilon = 0.1$.

    图 2  不同耦合强度下, (a) 质心平均速度$\left\langle V \right\rangle $、(b) 斯托克斯效率$\eta $随粗糙势扰动振幅$\varepsilon $的变化($a = 0.5$, $A = 3$, $H = 5$)

    Figure 2.  Curves of (a) the center-of-mass velocity $\left\langle V \right\rangle $ and (b) the Stokes efficiency $\eta $ varying with perturbation amplitude $\varepsilon $ for different coupling strength k, where $a = 0.5$, $A = 3$, $H = 5$.

    图 3  不同扰动波数H下 (a) 质心平均速度$\left\langle V \right\rangle $; (b) 斯托克斯效率$\eta $随耦合强度k的变化曲线, 其中$a = 0.2$, $A = 3$, $\varepsilon = 0.1$

    Figure 3.  Curves of (a) the center-of-mass velocity $\left\langle V \right\rangle $; (b) the Stokes efficiency $\eta $ varying with coupling strength k for different perturbed wavenumber H, where $a = 0.2$, $A = 3$, $\varepsilon = 0.1$.

    图 4  不同噪声强度下, (a) 质心平均速度速度$\left\langle V \right\rangle $、(b) 斯托克斯效率$\eta $随扰动波数H的变化($a \!=\! 0.2$, $k \!=\! 10$, $A \!=\! 3$, $\varepsilon \!=\! 0.1$)

    Figure 4.  Curves of (a) the center-of-mass velocity $\left\langle V \right\rangle $ and (b) the Stokes efficiency $\eta $ varying with perturbed wavenumber H for different noise intensity D, where $a = 0.2$, $k = 10$, $A = 3$, $\varepsilon = 0.1$.

    图 5  不同耦合强度下, (a) 质心平均速度$\left\langle V \right\rangle $、(b) 斯托克斯效率$\eta $随外力振幅A的变化($a = 0.2$, $H = 5$, $\varepsilon = 0.1$)

    Figure 5.  Curves of (a) the center-of-mass velocity $\left\langle V \right\rangle $ and (b) the Stokes efficiency $\eta $ varying with amplitude A for different coupling strength k, where $a = 0.2$, $H = 5$, $\varepsilon = 0.1$.

    图 6  (a) 质心平均速度$\left\langle V \right\rangle $随耦合自由长度a的变化($A = 3$, $\varepsilon = 0.1$, $H = 5$, $k = 30$, $D = 0.1$); (b) 质心平均速度$\left\langle V \right\rangle $随耦合自由长度a及耦合强度k的变化($A = 3$, $\varepsilon = 0.1$, $H = 5$, $D = 0.1$)

    Figure 6.  Curves of (a) the center-of-mass velocity $\left\langle V \right\rangle $ varying with free length a, where $A = 3$, $k = 30$, $\varepsilon = 0.1$, $D = 0.1$; the curves of (b) $\left\langle V \right\rangle $ varying with coupling strength k and free length a, where $A = 3$, $\varepsilon = 0.1$, $k = 30$, $D = 0.1$.

    Baidu
  • [1]

    Xie P 2010 Int. J. Biol. Sci. 6 665

    [2]

    黎明, 欧阳钟灿, 舒咬根 2016 18 188702Google Scholar

    Li M, Ouyang Z C, Shu Y G 2016 Acta Phys. Sin. 18 188702Google Scholar

    [3]

    郭晓强 2019 自然杂志 41 56

    Guo X Q 2019 Chin. J. Nat. 41 56

    [4]

    Allen R D, Metuzals J, Tasahi I, Brady S T, Gilbert S P 1982 Science 218 1127Google Scholar

    [5]

    Vale R D, Schnapp B J, Reese T S, Sheetz M P 1985 Cell 40 449Google Scholar

    [6]

    Vale R D, Reese T S, Sheetz M P 1985 Cell 42 39Google Scholar

    [7]

    Dey K K, Zhao X, Tansi B M, Mendez-Ortiz W J, Cordova-Figueroa U M, Golestanian R, Sen A 2015 Nano Lett. 15 8311Google Scholar

    [8]

    Nara Y, Niemi H, Steinheimer J, Stöcker H 2017 Phys. Lett. B 769 543

    [9]

    Mateos J L, Arzola A V, Volke-Seplveda K 2011 Phys. Rev. Lett. 106 168104Google Scholar

    [10]

    Minucci S, Pelicci P G 2006 Nat. Rev. Cancer 6 38Google Scholar

    [11]

    Palmigiano A, Santaniello F, Cerutti A, Penkov D, Pu-rushothama D 2018 Sci. Rep. 8 3198Google Scholar

    [12]

    Linke H 2002 Appl. Phys. A 75 167Google Scholar

    [13]

    Van den Heuvel M G L, Dekker C 2007 Science 317 333Google Scholar

    [14]

    Zhang H W, Wen S T, Zhang H T, Li Y X, Chen G R 2012 Chin. Phys. B 21 078701Google Scholar

    [15]

    Doering C R 1995 Nuovo Cimento 17 685Google Scholar

    [16]

    Astumian R D, Bier M 1994 Phys. Rev. Lett. 72 1766Google Scholar

    [17]

    Gao T F, Chen J C 2009 J. Phys. A: Math. Theor. 42 065002Google Scholar

    [18]

    Krishnan R, Chacko J, Sahoo M, Jayannavar A M 2006 J. Stat. Mech.: Theory Exp. 2006 P06017

    [19]

    Wang H Y, Bao J D 2013 Physica A 392 4850

    [20]

    Li P C, Chen H B, Fan H, Shen W M, Zheng Z G 2017 J. Phys. A: Math. Theor. 50 475003Google Scholar

    [21]

    延明月, 张旭, 刘晨昊, 黄仁忠, 高天附, 郑志刚 2018 67 190501Google Scholar

    Yan M Y, Zhang X, Liu C H, Huang R Z, Gao T F, Zheng Z G 2018 Acta Phys. Sin. 67 190501Google Scholar

    [22]

    Camargo S, Anteneodo C 2018 Physica A 495 114Google Scholar

    [23]

    Frauenfelder H, Sligar S G, Wolynes P G 1991 Science 254 1598Google Scholar

    [24]

    Frauenfelder H, Wolynes P G, Austin R H 1999 Rev. Mod. Phys. 71 S419Google Scholar

    [25]

    Zwanzig R 1988 Proc. Natl. Acad. Sci. U.S.A. 85 2029Google Scholar

    [26]

    Marchesoni F 1997 Phys. Rev. E 56 2492Google Scholar

    [27]

    Parrondo J M R, Cisneros B J D 2002 Physics A 75 179

    [28]

    Wang H, Oster G 2002 Europhys. Lett. 57 134Google Scholar

    [29]

    Sekimoto K 1997 J. Phys. Soc. Jpn. 66 1234Google Scholar

    [30]

    Ai B Q, Xie H Z, Liao H Y, Liu L G 2006 J. Stat. Mech.: Theory Exp. 2006 P09016

    [31]

    Gehlen S V, Evstigneev M, Reimann P 2009 Phys. Rev. E 79 031114Google Scholar

    [32]

    Ai B Q, Zhong W R 2011 Phys. Rev. E 83 051106Google Scholar

  • [1] Yang Wen-Bin, Zhang Hua-Lei, Qi Xin-Hua, Che Qing-Feng, Zhou Jiang-Ning, Bai Bing, Chen Shuang, Mu Jin-He. Coherent anti-Stokes Raman scattering spectral calculation and vibrational-rotational temperature measurement of non-equilibrium plasma flow field. Acta Physica Sinica, 2024, 73(15): 154202. doi: 10.7498/aps.73.20240455
    [2] Gu Jing-Xuan, Zheng Ting, Guo Ming-Shuai, Xia Dong-Sheng, Zhang Hui-Chen. Fluid dynamics simulation on water lubricating performance of micro-/nano-textured surfaces considering roughness structures. Acta Physica Sinica, 2024, 73(11): 114601. doi: 10.7498/aps.73.20240333
    [3] Liu Yan-Yan, Sun Jia-Ming, Fan Li-Ming, Gao Tian-Fu, Zheng Zhi-Gang. Directional transport of two-dimensional coupled Brownian particles subjected to nonconserved forces. Acta Physica Sinica, 2023, 72(4): 040501. doi: 10.7498/aps.72.20221741
    [4] Cao Jia-Hui, Liu Yan-Yan, Ai Bao-Quan, Huang Ren-Zhong, Gao Tian-Fu. Transport performance of spatial non-uniform friction ratchets. Acta Physica Sinica, 2021, 70(23): 230201. doi: 10.7498/aps.70.20210802
    [5] Li Rui-Tao, Tang Gang, Xia Hui, Xun Zhi-Peng, Li Jia-Xiang, Zhu Lei. Numerical simulation of melting dynamic process and surface scale properties of two-dimensional honeycomb lattice. Acta Physica Sinica, 2019, 68(5): 050301. doi: 10.7498/aps.68.20181774
    [6] Mei Tao, Chen Zhan-Xiu, Yang Li, Wang Kun, Miao Rui-Can. Effect of rough inner wall of nanochannel on fluid flow behavior. Acta Physica Sinica, 2019, 68(9): 094701. doi: 10.7498/aps.68.20181956
    [7] Yan Ming-Yue, Zhang Xu, Liu Chen-Hao, Huang Ren-Zhong, Gao Tian-Fu, Zheng Zhi-Gang. Energy conversion efficiency of feedback pulsing ratchet. Acta Physica Sinica, 2018, 67(19): 190501. doi: 10.7498/aps.67.20181066
    [8] Zhang Yong-Jian, Ye Fang-Xia, Dai Jun, He Bin-Feng, Zang Du-Yang. Influence of nano-scaled roughness on evaporation patterns of colloidal droplets. Acta Physica Sinica, 2017, 66(6): 066101. doi: 10.7498/aps.66.066101
    [9] Lü Ming-Tao, Yan Ming-Yue, Ai Bao-Quan, Gao Tian-Fu, Zheng Zhi-Gang. Stokes efficiency in the overdamped Brownian ratchet. Acta Physica Sinica, 2017, 66(22): 220501. doi: 10.7498/aps.66.220501
    [10] Jiang Yue-Song, Nie Meng-Yao, Zhang Chong-Hui, Xin Can-Wei, Hua Hou-Qiang. Terahertz scattering property for the coated object of rough surface. Acta Physica Sinica, 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [11] Zhang Cheng-Bin, Xu Zhao-Lin, Chen Yong-Ping. Molecular dynamics simulation on fluid flow and heat transfer in rough nanochannels. Acta Physica Sinica, 2014, 63(21): 214706. doi: 10.7498/aps.63.214706
    [12] Song Bao-Wei, Guo Yun-He, Luo Zhuang-Zhu, Xu Xiang-Hui, Wang Ying. Investigation about drag reduction annulus experiment of hydrophobic surface. Acta Physica Sinica, 2013, 62(15): 154701. doi: 10.7498/aps.62.154701
    [13] Wu Wei-Xia, Zheng Zhi-Gang. Directed transport of elastically coupled particles in a two-dimensional potential. Acta Physica Sinica, 2013, 62(19): 190511. doi: 10.7498/aps.62.190511
    [14] Xue Wei, Xie Guo-Xin, Wang Quan, Zhang Miao, Zheng Bei-Rong. The surface energy and nano-adhesion behavior of some micro-component material in MEMS. Acta Physica Sinica, 2009, 58(4): 2518-2522. doi: 10.7498/aps.58.2518
    [15] Zhang Bao-Ling, He Zhi-Bing, Wu Wei-Dong, Liu Xing-Hua, Yang Xiang-Dong. Influence of duty ratio on the fabrication of a-C:H film on microshell. Acta Physica Sinica, 2009, 58(9): 6436-6440. doi: 10.7498/aps.58.6436
    [16] Zhang Cheng-Bin, Chen Yong-Ping, Shi Ming-Heng, Fu Pan-Pan, Wu Jia-Feng. Fractal characteristics of surface roughness and its effect on laminar flow in microchannels. Acta Physica Sinica, 2009, 58(10): 7050-7056. doi: 10.7498/aps.58.7050
    [17] Hao Peng-Fei, Yao Zhao-Hui, He Feng. Experimental study of flow characteristics in rough microchannels. Acta Physica Sinica, 2007, 56(8): 4728-4732. doi: 10.7498/aps.56.4728
    [18] Zhang Cui-Ling, Zheng Rui-Lun, Teng Jiao. Influence of NiFeNb seed layer on hysteresis loops of permalloy films. Acta Physica Sinica, 2005, 54(11): 5389-5394. doi: 10.7498/aps.54.5389
    [19] SUN XIA, WU ZI-QIN. FRACTAL AND MULTIFRACTAL DESCRIPTION OF SURFACE TOPOGRAPHY. Acta Physica Sinica, 2001, 50(11): 2126-2131. doi: 10.7498/aps.50.2126
    [20] HUANG BING-ZHONG, YU YU-ZHEN, HONG GUO-GUANG. THE ROUGHNESS OF THE Si-SiO2 INTERFACE. Acta Physica Sinica, 1987, 36(7): 829-837. doi: 10.7498/aps.36.829
Metrics
  • Abstract views:  7626
  • PDF Downloads:  76
  • Cited By: 0
Publishing process
  • Received Date:  06 August 2019
  • Accepted Date:  17 September 2019
  • Available Online:  27 November 2019
  • Published Online:  01 December 2019

/

返回文章
返回
Baidu
map