搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粗糙纳通道内流体流动与传热的分子动力学模拟研究

张程宾 许兆林 陈永平

引用本文:
Citation:

粗糙纳通道内流体流动与传热的分子动力学模拟研究

张程宾, 许兆林, 陈永平

Molecular dynamics simulation on fluid flow and heat transfer in rough nanochannels

Zhang Cheng-Bin, Xu Zhao-Lin, Chen Yong-Ping
PDF
导出引用
  • 为研究粗糙表面对纳尺度流体流动和传热及其流固界面速度滑移与温度阶跃的影响,本文建立了粗糙纳通道内流体流动和传热耦合过程的分子动力学模型,模拟研究了粗糙通道内流体的微观结构、速度和温度分布、速度滑移和温度阶跃并与光滑通道进行了比较,并分析了固液相互作用强度和壁面刚度对界面处速度滑移和温度阶跃的影响规律. 研究结果表明,在外力作用下,纳通道主流区域的速度分布呈抛物线分布,由于流体流动导致的黏性耗散使得纳通道内的温度分布呈四次方分布. 并且,在固体壁面处存在速度滑移与温度阶跃. 表面粗糙度的存在使得流体剪切流动产生了额外的黏性耗散,使得粗糙纳通道内的流体速度水平小于光滑通道,温度水平高于光滑通道,并且粗糙表面的速度滑移与温度阶跃均小于光滑通道. 另外,固液相互作用强度的增大和壁面刚度的减小均可导致界面处速度滑移和温度阶跃程度降低.
    Fluid flow and heat transfer in a microstructure may depart from the traditional behavior due to the scale effect, and its velocity slip and temperature jump will occur at the fluid-solid interface. A molecular dynamics model of coupled fluid flow and heat transfer in rough nanochannels is developed to investigate the effect of surface roughness on nanoscale fluid flow and heat transfer, as well as velocity slip and temperature jump at the fluid-solid interface. The fluid microscopic structure, velocity and temperature distributions, interfacial velocity slip and temperature jump in a rough nanochannel are evaluated and compared with the corresponding smooth nanochannel. Effects of solid-liquid interaction and wall stiffness on the velocity slip and temperature jump are analyzed. Results indicate that the velocity of the fluid flow under an external force in a nanochannel in a bulk region is of a parabolic distribution, and the viscous dissipation due to shear flow induces the fourth-order temperature profile in the nanochannel. And the velocity slip and temperature jump will occur at the fluid-solid interface. The presence of roughness may introduce an extra viscous dissipation in shear flow, leading to a reduction of overall velocity and an increase in temperature in the nanochannel when compared with the smooth nanochannel. In addition, the degree of velocity slip and temperature jump at a rough liquid-solid interface is smaller than that at a smooth interface. In particular, the increase in fluid-solid interaction strength and reduction in wall stiffness will lead to a small velocity slip and temperature jump.
    • 基金项目: 国家自然科学基金(批准号:11190015,51306033)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11190015, 51306033).
    [1]

    Darhuber A A, Troian S M 2005 Annu. Rev. Fluid Mech. 37 425

    [2]

    Cracknell R F, Nicholson D, Quirke N 1995 Phys. Rev. Lett. 74 2463

    [3]
    [4]
    [5]

    Akhmatskaya B, Todd D, Daivis P J, Evans D J, Gubbins, K E, Pozhar L A 1997 J. Chem. Phys. 106 4684

    [6]
    [7]

    Megahed A M 2013 Chin. Phys. B 22 094701

    [8]
    [9]

    Sun D K, Xiang N, Jiang D, Chen K, Yi H, Ni Z H 2013 Chin. Phys. B 22 114704

    [10]

    Chen Y Y, Yi H H, Li H B 2008 Chin. Phys. Lett. 25 184

    [11]
    [12]
    [13]

    Huang Q G, Pan G, Song B W 2014 Acta Phys. Sin. 63 054701 (in Chinese) [黄桥高, 潘光, 宋保维 2014 63 054701]

    [14]

    Chen Y P, Zhang C B, Shi M H, Peterson G P 2012 Appl. Phys. Lett. 100 074102

    [15]
    [16]
    [17]

    Yan H, Zhang W M, Hu K M, Liu Y, Meng G 2013 Acta Phys. Sin. 62 174701 (in Chinese) [闫寒, 张文明, 胡开明, 刘岩, 孟光 2013 62 174701]

    [18]
    [19]

    Xie H, Liu C, Liu B W 2009 Acta Phys.-Chim. Sin. 25 994 (in Chinese) [解辉, 刘朝, 刘彬武 2009 物理化学学报 25 994]

    [20]
    [21]

    Ohara T, Torii D 2005 J. Chem. Phys. 122 214717

    [22]
    [23]

    Thompson P A, Troian S M 1997 Nature 389 360

    [24]

    Cieplak M, Koplik J, Banavar J R 2001 Phys. Rev. L 86 803

    [25]
    [26]

    Barrat J L, Bocquet L 1999 Phys. Rev. L 82 4671

    [27]
    [28]
    [29]

    Pahlavan A A, Freund J B 2011 Phys. Rev. E 83 021602

    [30]

    Nagayama G, Cheng P 2004 Int. J. Heat Mass Transf. 47 501

    [31]
    [32]
    [33]

    Kim B H, Beskok A, Cagin T 2008 Microfluid Nanofluid 5 551

    [34]
    [35]

    Liu C, Fan H B, Zhang K, Yuen M M F, Li Z G 2010 J. Chem. Phys. 132 094703

    [36]

    Sun J, Wang W, Wang H S 2013 J. Chem. Phys. 138 234703

    [37]
    [38]

    Sun J, Wang W, Wang H S 2013 Phys. Rev. E 87 023020

    [39]
    [40]

    Priezjev N V 2007 Phys. Rev. E 75 051605

    [41]
    [42]

    Kim B H, Beskok A, Cagin T 2008 J. Chem. Phys. 129 174701

    [43]
    [44]

    Li Z G 2009 Phys. Rev. E 79 026312

    [45]
    [46]
    [47]

    Soong C Y, Yen T H, Tzeng P Y 2007 Phys. Rev. E 76 036303

    [48]

    Niavarani A, Priezjev N V 2008 J. Chem. Phys. 129 144902

    [49]
    [50]
    [51]

    Sofos F D, Karakasidis T E, Liakopoulos A 2009 Phys. Rev. E 79 026305

    [52]

    Yang S C 2006 Microfluid Nanofluid 2 501

    [53]
    [54]

    Schmatko T, Hervet H, Leger L 2006 Langmuir 22 6843

    [55]
    [56]

    Wang Y, Keblinski P 2011 Appl. Phys. Lett. 99 073112

    [57]
    [58]
    [59]

    Priezjev N V 2007 J. Chem. Phys. 127 144708

    [60]

    Thompson P A, Robbins M O 1990 Phys. Rev. A 41 6830

    [61]
  • [1]

    Darhuber A A, Troian S M 2005 Annu. Rev. Fluid Mech. 37 425

    [2]

    Cracknell R F, Nicholson D, Quirke N 1995 Phys. Rev. Lett. 74 2463

    [3]
    [4]
    [5]

    Akhmatskaya B, Todd D, Daivis P J, Evans D J, Gubbins, K E, Pozhar L A 1997 J. Chem. Phys. 106 4684

    [6]
    [7]

    Megahed A M 2013 Chin. Phys. B 22 094701

    [8]
    [9]

    Sun D K, Xiang N, Jiang D, Chen K, Yi H, Ni Z H 2013 Chin. Phys. B 22 114704

    [10]

    Chen Y Y, Yi H H, Li H B 2008 Chin. Phys. Lett. 25 184

    [11]
    [12]
    [13]

    Huang Q G, Pan G, Song B W 2014 Acta Phys. Sin. 63 054701 (in Chinese) [黄桥高, 潘光, 宋保维 2014 63 054701]

    [14]

    Chen Y P, Zhang C B, Shi M H, Peterson G P 2012 Appl. Phys. Lett. 100 074102

    [15]
    [16]
    [17]

    Yan H, Zhang W M, Hu K M, Liu Y, Meng G 2013 Acta Phys. Sin. 62 174701 (in Chinese) [闫寒, 张文明, 胡开明, 刘岩, 孟光 2013 62 174701]

    [18]
    [19]

    Xie H, Liu C, Liu B W 2009 Acta Phys.-Chim. Sin. 25 994 (in Chinese) [解辉, 刘朝, 刘彬武 2009 物理化学学报 25 994]

    [20]
    [21]

    Ohara T, Torii D 2005 J. Chem. Phys. 122 214717

    [22]
    [23]

    Thompson P A, Troian S M 1997 Nature 389 360

    [24]

    Cieplak M, Koplik J, Banavar J R 2001 Phys. Rev. L 86 803

    [25]
    [26]

    Barrat J L, Bocquet L 1999 Phys. Rev. L 82 4671

    [27]
    [28]
    [29]

    Pahlavan A A, Freund J B 2011 Phys. Rev. E 83 021602

    [30]

    Nagayama G, Cheng P 2004 Int. J. Heat Mass Transf. 47 501

    [31]
    [32]
    [33]

    Kim B H, Beskok A, Cagin T 2008 Microfluid Nanofluid 5 551

    [34]
    [35]

    Liu C, Fan H B, Zhang K, Yuen M M F, Li Z G 2010 J. Chem. Phys. 132 094703

    [36]

    Sun J, Wang W, Wang H S 2013 J. Chem. Phys. 138 234703

    [37]
    [38]

    Sun J, Wang W, Wang H S 2013 Phys. Rev. E 87 023020

    [39]
    [40]

    Priezjev N V 2007 Phys. Rev. E 75 051605

    [41]
    [42]

    Kim B H, Beskok A, Cagin T 2008 J. Chem. Phys. 129 174701

    [43]
    [44]

    Li Z G 2009 Phys. Rev. E 79 026312

    [45]
    [46]
    [47]

    Soong C Y, Yen T H, Tzeng P Y 2007 Phys. Rev. E 76 036303

    [48]

    Niavarani A, Priezjev N V 2008 J. Chem. Phys. 129 144902

    [49]
    [50]
    [51]

    Sofos F D, Karakasidis T E, Liakopoulos A 2009 Phys. Rev. E 79 026305

    [52]

    Yang S C 2006 Microfluid Nanofluid 2 501

    [53]
    [54]

    Schmatko T, Hervet H, Leger L 2006 Langmuir 22 6843

    [55]
    [56]

    Wang Y, Keblinski P 2011 Appl. Phys. Lett. 99 073112

    [57]
    [58]
    [59]

    Priezjev N V 2007 J. Chem. Phys. 127 144708

    [60]

    Thompson P A, Robbins M O 1990 Phys. Rev. A 41 6830

    [61]
  • [1] 谷靖萱, 郑庭, 郭明帅, 夏冬生, 张会臣. 计入粗糙峰的微纳结构表面水润滑流体动力学仿真.  , 2024, 73(11): 114601. doi: 10.7498/aps.73.20240333
    [2] 李瑞涛, 唐刚, 夏辉, 寻之朋, 李嘉翔, 朱磊. 二维随机蜂巢网格熔断动力学过程和熔断面标度性质的数值模拟.  , 2019, 68(5): 050301. doi: 10.7498/aps.68.20181774
    [3] 刘晨昊, 刘天宇, 黄仁忠, 高天附, 舒咬根. 粗糙势中耦合布朗粒子的定向输运性能.  , 2019, 68(24): 240501. doi: 10.7498/aps.68.20191203
    [4] 梅涛, 陈占秀, 杨历, 王坤, 苗瑞灿. 纳米通道粗糙内壁对流体流动行为的影响.  , 2019, 68(9): 094701. doi: 10.7498/aps.68.20181956
    [5] 张龙艳, 徐进良, 雷俊鹏. 尺寸效应对微通道内固液界面温度边界的影响.  , 2019, 68(2): 020201. doi: 10.7498/aps.68.20181876
    [6] 张永建, 叶芳霞, 戴君, 何斌锋, 臧渡洋. 纳米粗糙度对胶体液滴蒸发图案的影响机制.  , 2017, 66(6): 066101. doi: 10.7498/aps.66.066101
    [7] 王胜, 徐进良, 张龙艳. 非对称纳米通道内流体流动与传热的分子动力学.  , 2017, 66(20): 204704. doi: 10.7498/aps.66.204704
    [8] 唐琬婷, 肖时芳, 孙学贵, 胡望宇, 邓辉球. 液态锂在铜的微通道中的流动行为.  , 2016, 65(10): 104705. doi: 10.7498/aps.65.104705
    [9] 江月松, 聂梦瑶, 张崇辉, 辛灿伟, 华厚强. 粗糙表面涂覆目标的太赫兹波散射特性研究.  , 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [10] 宋保维, 郭云鹤, 罗荘竹, 徐向辉, 王鹰. 疏水表面减阻环带实验研究.  , 2013, 62(15): 154701. doi: 10.7498/aps.62.154701
    [11] 薛伟, 解国新, 王权, 张淼, 郑蓓蓉. 几种微构件材料的表面能及纳观黏附行为研究.  , 2009, 58(4): 2518-2522. doi: 10.7498/aps.58.2518
    [12] 张宝玲, 何智兵, 吴卫东, 刘兴华, 杨向东. 占空比对微球a-C:H薄膜制备的影响.  , 2009, 58(9): 6436-6440. doi: 10.7498/aps.58.6436
    [13] 张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰. 表面粗糙度的分形特征及其对微通道内层流流动的影响.  , 2009, 58(10): 7050-7056. doi: 10.7498/aps.58.7050
    [14] 李志华, 王文新, 刘林生, 蒋中伟, 高汉超, 周均铭. As保护下的生长中断时间对AlSb/InAs超晶格界面粗糙度的影响.  , 2007, 56(3): 1785-1789. doi: 10.7498/aps.56.1785
    [15] 郝鹏飞, 姚朝晖, 何 枫. 粗糙微管道内液体流动特性的实验研究.  , 2007, 56(8): 4728-4732. doi: 10.7498/aps.56.4728
    [16] 侯海虹, 孙喜莲, 申雁鸣, 邵建达, 范正修, 易 葵. 电子束蒸发氧化锆薄膜的粗糙度和光散射特性.  , 2006, 55(6): 3124-3127. doi: 10.7498/aps.55.3124
    [17] 曹炳阳, 陈 民, 过增元. 纳米通道内液体流动的滑移现象.  , 2006, 55(10): 5305-5310. doi: 10.7498/aps.55.5305
    [18] 张翠玲, 郑瑞伦, 滕 蛟. NiFeNb种子层对坡莫合金磁滞回线的影响.  , 2005, 54(11): 5389-5394. doi: 10.7498/aps.54.5389
    [19] 孙霞, 吴自勤. 规则表面形貌的分形和多重分形描述.  , 2001, 50(11): 2126-2131. doi: 10.7498/aps.50.2126
    [20] 黄炳忠, 余玉贞, 洪国光. Si-SiO2界面的粗糙度.  , 1987, 36(7): 829-837. doi: 10.7498/aps.36.829
计量
  • 文章访问数:  7150
  • PDF下载量:  1070
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-24
  • 修回日期:  2014-05-25
  • 刊出日期:  2014-11-05

/

返回文章
返回
Baidu
map