Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics simulation on fluid flow and heat transfer in rough nanochannels

Zhang Cheng-Bin Xu Zhao-Lin Chen Yong-Ping

Citation:

Molecular dynamics simulation on fluid flow and heat transfer in rough nanochannels

Zhang Cheng-Bin, Xu Zhao-Lin, Chen Yong-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Fluid flow and heat transfer in a microstructure may depart from the traditional behavior due to the scale effect, and its velocity slip and temperature jump will occur at the fluid-solid interface. A molecular dynamics model of coupled fluid flow and heat transfer in rough nanochannels is developed to investigate the effect of surface roughness on nanoscale fluid flow and heat transfer, as well as velocity slip and temperature jump at the fluid-solid interface. The fluid microscopic structure, velocity and temperature distributions, interfacial velocity slip and temperature jump in a rough nanochannel are evaluated and compared with the corresponding smooth nanochannel. Effects of solid-liquid interaction and wall stiffness on the velocity slip and temperature jump are analyzed. Results indicate that the velocity of the fluid flow under an external force in a nanochannel in a bulk region is of a parabolic distribution, and the viscous dissipation due to shear flow induces the fourth-order temperature profile in the nanochannel. And the velocity slip and temperature jump will occur at the fluid-solid interface. The presence of roughness may introduce an extra viscous dissipation in shear flow, leading to a reduction of overall velocity and an increase in temperature in the nanochannel when compared with the smooth nanochannel. In addition, the degree of velocity slip and temperature jump at a rough liquid-solid interface is smaller than that at a smooth interface. In particular, the increase in fluid-solid interaction strength and reduction in wall stiffness will lead to a small velocity slip and temperature jump.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11190015, 51306033).
    [1]

    Darhuber A A, Troian S M 2005 Annu. Rev. Fluid Mech. 37 425

    [2]

    Cracknell R F, Nicholson D, Quirke N 1995 Phys. Rev. Lett. 74 2463

    [3]
    [4]
    [5]

    Akhmatskaya B, Todd D, Daivis P J, Evans D J, Gubbins, K E, Pozhar L A 1997 J. Chem. Phys. 106 4684

    [6]
    [7]

    Megahed A M 2013 Chin. Phys. B 22 094701

    [8]
    [9]

    Sun D K, Xiang N, Jiang D, Chen K, Yi H, Ni Z H 2013 Chin. Phys. B 22 114704

    [10]

    Chen Y Y, Yi H H, Li H B 2008 Chin. Phys. Lett. 25 184

    [11]
    [12]
    [13]

    Huang Q G, Pan G, Song B W 2014 Acta Phys. Sin. 63 054701 (in Chinese) [黄桥高, 潘光, 宋保维 2014 63 054701]

    [14]

    Chen Y P, Zhang C B, Shi M H, Peterson G P 2012 Appl. Phys. Lett. 100 074102

    [15]
    [16]
    [17]

    Yan H, Zhang W M, Hu K M, Liu Y, Meng G 2013 Acta Phys. Sin. 62 174701 (in Chinese) [闫寒, 张文明, 胡开明, 刘岩, 孟光 2013 62 174701]

    [18]
    [19]

    Xie H, Liu C, Liu B W 2009 Acta Phys.-Chim. Sin. 25 994 (in Chinese) [解辉, 刘朝, 刘彬武 2009 物理化学学报 25 994]

    [20]
    [21]

    Ohara T, Torii D 2005 J. Chem. Phys. 122 214717

    [22]
    [23]

    Thompson P A, Troian S M 1997 Nature 389 360

    [24]

    Cieplak M, Koplik J, Banavar J R 2001 Phys. Rev. L 86 803

    [25]
    [26]

    Barrat J L, Bocquet L 1999 Phys. Rev. L 82 4671

    [27]
    [28]
    [29]

    Pahlavan A A, Freund J B 2011 Phys. Rev. E 83 021602

    [30]

    Nagayama G, Cheng P 2004 Int. J. Heat Mass Transf. 47 501

    [31]
    [32]
    [33]

    Kim B H, Beskok A, Cagin T 2008 Microfluid Nanofluid 5 551

    [34]
    [35]

    Liu C, Fan H B, Zhang K, Yuen M M F, Li Z G 2010 J. Chem. Phys. 132 094703

    [36]

    Sun J, Wang W, Wang H S 2013 J. Chem. Phys. 138 234703

    [37]
    [38]

    Sun J, Wang W, Wang H S 2013 Phys. Rev. E 87 023020

    [39]
    [40]

    Priezjev N V 2007 Phys. Rev. E 75 051605

    [41]
    [42]

    Kim B H, Beskok A, Cagin T 2008 J. Chem. Phys. 129 174701

    [43]
    [44]

    Li Z G 2009 Phys. Rev. E 79 026312

    [45]
    [46]
    [47]

    Soong C Y, Yen T H, Tzeng P Y 2007 Phys. Rev. E 76 036303

    [48]

    Niavarani A, Priezjev N V 2008 J. Chem. Phys. 129 144902

    [49]
    [50]
    [51]

    Sofos F D, Karakasidis T E, Liakopoulos A 2009 Phys. Rev. E 79 026305

    [52]

    Yang S C 2006 Microfluid Nanofluid 2 501

    [53]
    [54]

    Schmatko T, Hervet H, Leger L 2006 Langmuir 22 6843

    [55]
    [56]

    Wang Y, Keblinski P 2011 Appl. Phys. Lett. 99 073112

    [57]
    [58]
    [59]

    Priezjev N V 2007 J. Chem. Phys. 127 144708

    [60]

    Thompson P A, Robbins M O 1990 Phys. Rev. A 41 6830

    [61]
  • [1]

    Darhuber A A, Troian S M 2005 Annu. Rev. Fluid Mech. 37 425

    [2]

    Cracknell R F, Nicholson D, Quirke N 1995 Phys. Rev. Lett. 74 2463

    [3]
    [4]
    [5]

    Akhmatskaya B, Todd D, Daivis P J, Evans D J, Gubbins, K E, Pozhar L A 1997 J. Chem. Phys. 106 4684

    [6]
    [7]

    Megahed A M 2013 Chin. Phys. B 22 094701

    [8]
    [9]

    Sun D K, Xiang N, Jiang D, Chen K, Yi H, Ni Z H 2013 Chin. Phys. B 22 114704

    [10]

    Chen Y Y, Yi H H, Li H B 2008 Chin. Phys. Lett. 25 184

    [11]
    [12]
    [13]

    Huang Q G, Pan G, Song B W 2014 Acta Phys. Sin. 63 054701 (in Chinese) [黄桥高, 潘光, 宋保维 2014 63 054701]

    [14]

    Chen Y P, Zhang C B, Shi M H, Peterson G P 2012 Appl. Phys. Lett. 100 074102

    [15]
    [16]
    [17]

    Yan H, Zhang W M, Hu K M, Liu Y, Meng G 2013 Acta Phys. Sin. 62 174701 (in Chinese) [闫寒, 张文明, 胡开明, 刘岩, 孟光 2013 62 174701]

    [18]
    [19]

    Xie H, Liu C, Liu B W 2009 Acta Phys.-Chim. Sin. 25 994 (in Chinese) [解辉, 刘朝, 刘彬武 2009 物理化学学报 25 994]

    [20]
    [21]

    Ohara T, Torii D 2005 J. Chem. Phys. 122 214717

    [22]
    [23]

    Thompson P A, Troian S M 1997 Nature 389 360

    [24]

    Cieplak M, Koplik J, Banavar J R 2001 Phys. Rev. L 86 803

    [25]
    [26]

    Barrat J L, Bocquet L 1999 Phys. Rev. L 82 4671

    [27]
    [28]
    [29]

    Pahlavan A A, Freund J B 2011 Phys. Rev. E 83 021602

    [30]

    Nagayama G, Cheng P 2004 Int. J. Heat Mass Transf. 47 501

    [31]
    [32]
    [33]

    Kim B H, Beskok A, Cagin T 2008 Microfluid Nanofluid 5 551

    [34]
    [35]

    Liu C, Fan H B, Zhang K, Yuen M M F, Li Z G 2010 J. Chem. Phys. 132 094703

    [36]

    Sun J, Wang W, Wang H S 2013 J. Chem. Phys. 138 234703

    [37]
    [38]

    Sun J, Wang W, Wang H S 2013 Phys. Rev. E 87 023020

    [39]
    [40]

    Priezjev N V 2007 Phys. Rev. E 75 051605

    [41]
    [42]

    Kim B H, Beskok A, Cagin T 2008 J. Chem. Phys. 129 174701

    [43]
    [44]

    Li Z G 2009 Phys. Rev. E 79 026312

    [45]
    [46]
    [47]

    Soong C Y, Yen T H, Tzeng P Y 2007 Phys. Rev. E 76 036303

    [48]

    Niavarani A, Priezjev N V 2008 J. Chem. Phys. 129 144902

    [49]
    [50]
    [51]

    Sofos F D, Karakasidis T E, Liakopoulos A 2009 Phys. Rev. E 79 026305

    [52]

    Yang S C 2006 Microfluid Nanofluid 2 501

    [53]
    [54]

    Schmatko T, Hervet H, Leger L 2006 Langmuir 22 6843

    [55]
    [56]

    Wang Y, Keblinski P 2011 Appl. Phys. Lett. 99 073112

    [57]
    [58]
    [59]

    Priezjev N V 2007 J. Chem. Phys. 127 144708

    [60]

    Thompson P A, Robbins M O 1990 Phys. Rev. A 41 6830

    [61]
  • [1] Gu Jing-Xuan, Zheng Ting, Guo Ming-Shuai, Xia Dong-Sheng, Zhang Hui-Chen. Fluid dynamics simulation on water lubricating performance of micro-/nano-textured surfaces considering roughness structures. Acta Physica Sinica, 2024, 73(11): 114601. doi: 10.7498/aps.73.20240333
    [2] Li Rui-Tao, Tang Gang, Xia Hui, Xun Zhi-Peng, Li Jia-Xiang, Zhu Lei. Numerical simulation of melting dynamic process and surface scale properties of two-dimensional honeycomb lattice. Acta Physica Sinica, 2019, 68(5): 050301. doi: 10.7498/aps.68.20181774
    [3] Liu Chen-Hao, Liu Tian-Yu, Huang Ren-Zhong, Gao Tian-Fu, Shu Yao-Gen. Transport performance of coupled Brownian particles in rough ratchet. Acta Physica Sinica, 2019, 68(24): 240501. doi: 10.7498/aps.68.20191203
    [4] Mei Tao, Chen Zhan-Xiu, Yang Li, Wang Kun, Miao Rui-Can. Effect of rough inner wall of nanochannel on fluid flow behavior. Acta Physica Sinica, 2019, 68(9): 094701. doi: 10.7498/aps.68.20181956
    [5] Zhang Long-Yan, Xu Jin-Liang, Lei Jun-Peng. Size effect on boundary condition at solid-liquid interface in microchannel. Acta Physica Sinica, 2019, 68(2): 020201. doi: 10.7498/aps.68.20181876
    [6] Zhang Yong-Jian, Ye Fang-Xia, Dai Jun, He Bin-Feng, Zang Du-Yang. Influence of nano-scaled roughness on evaporation patterns of colloidal droplets. Acta Physica Sinica, 2017, 66(6): 066101. doi: 10.7498/aps.66.066101
    [7] Wang Sheng, Xu Jin-Liang, Zhang Long-Yan. Molecular dynamics simulation of fluid flow and heat transfer in an asymmetric nanochannel. Acta Physica Sinica, 2017, 66(20): 204704. doi: 10.7498/aps.66.204704
    [8] Tang Wan-Ting, Xiao Shi-Fang, Sun Xue-Gui, Hu Wang-Yu, Deng Hui-Qiu. The flow behavior of liquid Li in Cu micro-channels. Acta Physica Sinica, 2016, 65(10): 104705. doi: 10.7498/aps.65.104705
    [9] Jiang Yue-Song, Nie Meng-Yao, Zhang Chong-Hui, Xin Can-Wei, Hua Hou-Qiang. Terahertz scattering property for the coated object of rough surface. Acta Physica Sinica, 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [10] Song Bao-Wei, Guo Yun-He, Luo Zhuang-Zhu, Xu Xiang-Hui, Wang Ying. Investigation about drag reduction annulus experiment of hydrophobic surface. Acta Physica Sinica, 2013, 62(15): 154701. doi: 10.7498/aps.62.154701
    [11] Xue Wei, Xie Guo-Xin, Wang Quan, Zhang Miao, Zheng Bei-Rong. The surface energy and nano-adhesion behavior of some micro-component material in MEMS. Acta Physica Sinica, 2009, 58(4): 2518-2522. doi: 10.7498/aps.58.2518
    [12] Zhang Bao-Ling, He Zhi-Bing, Wu Wei-Dong, Liu Xing-Hua, Yang Xiang-Dong. Influence of duty ratio on the fabrication of a-C:H film on microshell. Acta Physica Sinica, 2009, 58(9): 6436-6440. doi: 10.7498/aps.58.6436
    [13] Zhang Cheng-Bin, Chen Yong-Ping, Shi Ming-Heng, Fu Pan-Pan, Wu Jia-Feng. Fractal characteristics of surface roughness and its effect on laminar flow in microchannels. Acta Physica Sinica, 2009, 58(10): 7050-7056. doi: 10.7498/aps.58.7050
    [14] Li Zhi-Hua, Wang Wen-Xin, Liu Lin-Sheng, Jiang Zhong-Wei, Gao Han-Chao, Zhou Jun-Ming. As-soak dependence of interface roughness of AlSb/InAs superlattice. Acta Physica Sinica, 2007, 56(3): 1785-1789. doi: 10.7498/aps.56.1785
    [15] Hao Peng-Fei, Yao Zhao-Hui, He Feng. Experimental study of flow characteristics in rough microchannels. Acta Physica Sinica, 2007, 56(8): 4728-4732. doi: 10.7498/aps.56.4728
    [16] Hou Hai-Hong, Sun Xi-Lian, Shen Yan-Ming, Shao Jian-Da, Fan Zheng-Xiu, Yi Kui. Roughness and light scattering properties of ZrO2 thin films deposited by electron beam evaporation. Acta Physica Sinica, 2006, 55(6): 3124-3127. doi: 10.7498/aps.55.3124
    [17] Cao Bing-Yang, Chen Min, Guo Zeng-Yuan. Velocity slip of liquid flow in nanochannels. Acta Physica Sinica, 2006, 55(10): 5305-5310. doi: 10.7498/aps.55.5305
    [18] Zhang Cui-Ling, Zheng Rui-Lun, Teng Jiao. Influence of NiFeNb seed layer on hysteresis loops of permalloy films. Acta Physica Sinica, 2005, 54(11): 5389-5394. doi: 10.7498/aps.54.5389
    [19] SUN XIA, WU ZI-QIN. FRACTAL AND MULTIFRACTAL DESCRIPTION OF SURFACE TOPOGRAPHY. Acta Physica Sinica, 2001, 50(11): 2126-2131. doi: 10.7498/aps.50.2126
    [20] HUANG BING-ZHONG, YU YU-ZHEN, HONG GUO-GUANG. THE ROUGHNESS OF THE Si-SiO2 INTERFACE. Acta Physica Sinica, 1987, 36(7): 829-837. doi: 10.7498/aps.36.829
Metrics
  • Abstract views:  7152
  • PDF Downloads:  1070
  • Cited By: 0
Publishing process
  • Received Date:  24 April 2014
  • Accepted Date:  25 May 2014
  • Published Online:  05 November 2014

/

返回文章
返回
Baidu
map