搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反馈脉冲棘轮的能量转化效率研究

延明月 张旭 刘晨昊 黄仁忠 高天附 郑志刚

引用本文:
Citation:

反馈脉冲棘轮的能量转化效率研究

延明月, 张旭, 刘晨昊, 黄仁忠, 高天附, 郑志刚

Energy conversion efficiency of feedback pulsing ratchet

Yan Ming-Yue, Zhang Xu, Liu Chen-Hao, Huang Ren-Zhong, Gao Tian-Fu, Zheng Zhi-Gang
PDF
导出引用
  • 研究了反馈脉冲棘轮的定向输运及能量转化效率.详细讨论了弹簧自由长度、耦合强度及脉冲相位等参量对耦合布朗粒子定向输运性能的影响.研究发现,一定自由长度和耦合强度都能促进反馈脉冲棘轮的定向输运,并能使耦合粒子拖动负载做功时的能量转化效率达到最大.此外,通过调节脉冲相位能使反馈棘轮在一个演化周期内获得两次流反转,且合适的相位还能增强反馈棘轮的定向输运.所得结论不仅可为实验上设计合适的反馈脉冲作用来优化棘轮的定向输运性能,而且还能为生物医疗上药物的精准投放提供一定的理论参考.
    Biomolecular motors are a big family of protein, and play a very important role in transporting the organelles within cells. They can also convert chemical energy into mechanical energy. In order to study the dynamic mechanism of molecular motors in depth, a great many of Brownian ratchet models such as double-temperature ratchet, feedback control ratchet, and hand-over-hand ratchet have been proposed. By investigating different kinds of ratchets, it is better to comprehend the directed transport of Brownian particles and obtain an insight into the transport process in biomedicine. Especially, the investigation of Brownian ratchets can also be used for improving the accurate drug delivery and effectively utilizing the medicine.Until now, the directed transport of ratchet has aoused the interest of researchers. It is found that a certain driving phase can lead to the current reversal of the underdamped ratchets in theory. A large number of experiments have shown that most of the biomolecular motors in cells are enzyme protein macromolecules and they can carry the “cargos” to implement the directed transport. Interestingly, molecular motors have high efficiency usually, and some of them can even reach an efficiency close to 100% in experiment. Nevertheless, it is found that the energy conversion of Brownian motors is low as indicated by calculating the rate between the effective work of particles and the input energy of ratchets. According to a comparison between the experimental results and theoretical analyses, it is well known that the efficiency of ratchets is still far from the actual motor efficiency measured experimentally. Therefore, how to increase the efficiency of molecular motor which is pulled by loads is still a very important research topic. Owing to the fact that the molecular motors are influenced by the cellular environment during the hydrolysis of ATP in the organism, the catalytic cycles of the coupled motor proteins are out of phase. This gives us an inspiration for establishing the corresponding feedback pulsing ratchet.Due to the effect of the feedback pulse on coupled ratchets, the directed transport character of pulsing ratchets when they drag loads is explored in the present work. And the directed transport, diffusion and energy conversion efficiency of coupled particles are discussed systematically. It can be observed that the directed transport of the feedback pulsing ratchets would be futher facilitated by adjusting suitable free length and coupling strength. Meanwhile, the energy conversion efficiency of coupled particles can obtain a maximum value under a certain free length and coupling strength. In particular, there is the current reversal in an evolutive cycle under a certain pulse. Moreover, the diffusion of coupled particles can be suppressed effectively by modulating the pulsing phase, thus the corresponding directed transport of pulsing ratchets can be facilitated. In addition, the energy conversion of feedback ratchets can also be improved if the load is appropriate. The current reserval obtained in this paper can be applied to the particle separation. On the other hand, these results provide some great experimental inspirations in the aspect of medical delivery.
      通信作者: 高天附, tianfugao@synu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11475022,11347003)、高等学校热力学与统计物理课程教学研究项目、辽宁省自然科学基金(批准号:20180550149)和华侨大学科研启动费项目资助的课题.
      Corresponding author: Gao Tian-Fu, tianfugao@synu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11475022, 11347003), the Teaching Research Program of Thermodynamics and Statistical Physics in the Institution of Higher Education, the Natural Science Foundation of Liaoning Province, China (Grant No. 20180550149), and the Scientific Research Funds of Huaqiao University, China.
    [1]

    Xie P 2010 Int. J. Biol. Sci. 6 665

    [2]

    Li C P, Chen H B, Zheng Z G 2017 Front. Phys. 12 120507

    [3]

    Zhang H W, Wen S T, Zhang H T, Li Y X, Chen G R 2012 Chin. Phys. B 21 078701

    [4]

    Munárriz J, Mazo J J, Falo F 2008 Phys. Rev. E 77 031915

    [5]

    Tutu H, Ouchi K, Horita T 2017 Phys. Rev. E 95 062103

    [6]

    Vorotnikov D 2017 Discr. Cont. Dyn. Syst. Ser. B 16 963

    [7]

    Reimann P 2002 Phys. Rep. 361 57

    [8]

    Rozenbaum V M, Yang D Y, Lin S H, Tsong T Y 2006 Physica A 363 211

    [9]

    Nara Y, Niemi H, Steinheimer J, Stöcker H 2017 Phys. Lett. B 769 024915

    [10]

    Mateos J L, Arzola A V, Volke-Seplveda K 2011 Phys. Rev. Lett. 106 168104

    [11]

    Minucci S, Pelicci P G 2006 Nat. Rev. Cancer 6 38

    [12]

    Palmigiano A, Santaniello F, Cerutti A, Penkov D, Purushothaman D 2018 Sci. Rep. 8 3198

    [13]

    Linke H 2002 Appl. Phys. A:Mater. Sci. Process. 75 167

    [14]

    van den Heuvel M G L, Dekker C 2007 Science 317 333

    [15]

    Ai B Q, He Y F, Zhong W R 2011 Phys. Rev. E 83 051106

    [16]

    Qin T Q, Wang F, Yang B, Luo M K 2015 Acta Phys. Sin. 64 120501 (in Chinese) [秦天齐, 王飞, 杨博, 罗懋康 2015 64 120501]

    [17]

    Sahoo M, Jayannavar A M 2017 Physica A 465 40

    [18]

    Wang F, Deng C, Tu Z, Ma H 2013 Acta Phys. Sin. 62 040501 (in Chinese) [王飞, 邓翠, 屠浙, 马洪 2013 62 040501]

    [19]

    Dinis L, Quintero R N 2015 Phys. Rev. E 91 032920

    [20]

    Wang H Y, Bao J D 2013 Physica A 06 037

    [21]

    Cubero D, Renzoni F 2016 Phys. Rev. Lett. 116 010602

    [22]

    Shu Y G, Ouyang Z C (in Chinese) [舒咬根, 欧阳钟灿 2007 物理 36 735]

    [23]

    Li M, Ouyang Z C, Shu Y G 2016 Acta Phys. Sin. 18 188702 (in Chinese) [黎明, 欧阳钟灿, 舒咬根 2016 18 188702]

    [24]

    Xie P, Chen H 2018 Phys. Chem. Chem. Phys. 20 4752

    [25]

    Nutku F, Aydiner E 2015 Chin. Phys. B 24 040501

    [26]

    Zeng C H, Wang H 2012 Chin. Phys. B 21 050502

    [27]

    Delacruz E M, Ostap E M, Sweeney H L 2001 J. Biol. Chem. 276 32373

    [28]

    Nishikawa S, Homma K, Komori Y, Iwaki M, Wazawa T, Hikikoshi Iwone A, Saito J, Ikebe R, Katayama E, Yanagida T 2002 Biochem. Biophys. Res. Commun. 290 311

    [29]

    Li C P, Chen H B, Zheng Z G 2017 Front. Phys. 12 120502

    [30]

    Colomés E, Zhan Z, Marian D, Oriols X 2017 Phys. Rev. B 96 075135

    [31]

    Gao T F, Chen J C 2009 J. Phys. A:Math. Theor. 42 065002

    [32]

    Stella L, Lorenz C D, Kantorovich L 2014 Phys. Rev. B 89 1

    [33]

    Li G, Tu Z C 2016 Sci. China:Phys. Mech. Astron. 59 640501

    [34]

    Zheng Z G, Cross M C, Hu G 2002 Phys. Rev. Lett. 89 154102

    [35]

    Wang H Y, Bao J D 2007 Physica A 374 33

    [36]

    Fan L M, L M T, Huang R Z, Gao T F, Zheng Z G 2017 Acta Phys. Sin. 66 010501 (in Chinese) [范黎明, 吕明涛, 黄仁忠, 高天附, 郑志刚 2017 66 010501]

    [37]

    Lu S C, Ou Y L, Ai B Q 2017 Physica A 482 501

    [38]

    Ai B Q, He Y F, Zhong W R 2014 J. Chem. Phys. 141 194111

  • [1]

    Xie P 2010 Int. J. Biol. Sci. 6 665

    [2]

    Li C P, Chen H B, Zheng Z G 2017 Front. Phys. 12 120507

    [3]

    Zhang H W, Wen S T, Zhang H T, Li Y X, Chen G R 2012 Chin. Phys. B 21 078701

    [4]

    Munárriz J, Mazo J J, Falo F 2008 Phys. Rev. E 77 031915

    [5]

    Tutu H, Ouchi K, Horita T 2017 Phys. Rev. E 95 062103

    [6]

    Vorotnikov D 2017 Discr. Cont. Dyn. Syst. Ser. B 16 963

    [7]

    Reimann P 2002 Phys. Rep. 361 57

    [8]

    Rozenbaum V M, Yang D Y, Lin S H, Tsong T Y 2006 Physica A 363 211

    [9]

    Nara Y, Niemi H, Steinheimer J, Stöcker H 2017 Phys. Lett. B 769 024915

    [10]

    Mateos J L, Arzola A V, Volke-Seplveda K 2011 Phys. Rev. Lett. 106 168104

    [11]

    Minucci S, Pelicci P G 2006 Nat. Rev. Cancer 6 38

    [12]

    Palmigiano A, Santaniello F, Cerutti A, Penkov D, Purushothaman D 2018 Sci. Rep. 8 3198

    [13]

    Linke H 2002 Appl. Phys. A:Mater. Sci. Process. 75 167

    [14]

    van den Heuvel M G L, Dekker C 2007 Science 317 333

    [15]

    Ai B Q, He Y F, Zhong W R 2011 Phys. Rev. E 83 051106

    [16]

    Qin T Q, Wang F, Yang B, Luo M K 2015 Acta Phys. Sin. 64 120501 (in Chinese) [秦天齐, 王飞, 杨博, 罗懋康 2015 64 120501]

    [17]

    Sahoo M, Jayannavar A M 2017 Physica A 465 40

    [18]

    Wang F, Deng C, Tu Z, Ma H 2013 Acta Phys. Sin. 62 040501 (in Chinese) [王飞, 邓翠, 屠浙, 马洪 2013 62 040501]

    [19]

    Dinis L, Quintero R N 2015 Phys. Rev. E 91 032920

    [20]

    Wang H Y, Bao J D 2013 Physica A 06 037

    [21]

    Cubero D, Renzoni F 2016 Phys. Rev. Lett. 116 010602

    [22]

    Shu Y G, Ouyang Z C (in Chinese) [舒咬根, 欧阳钟灿 2007 物理 36 735]

    [23]

    Li M, Ouyang Z C, Shu Y G 2016 Acta Phys. Sin. 18 188702 (in Chinese) [黎明, 欧阳钟灿, 舒咬根 2016 18 188702]

    [24]

    Xie P, Chen H 2018 Phys. Chem. Chem. Phys. 20 4752

    [25]

    Nutku F, Aydiner E 2015 Chin. Phys. B 24 040501

    [26]

    Zeng C H, Wang H 2012 Chin. Phys. B 21 050502

    [27]

    Delacruz E M, Ostap E M, Sweeney H L 2001 J. Biol. Chem. 276 32373

    [28]

    Nishikawa S, Homma K, Komori Y, Iwaki M, Wazawa T, Hikikoshi Iwone A, Saito J, Ikebe R, Katayama E, Yanagida T 2002 Biochem. Biophys. Res. Commun. 290 311

    [29]

    Li C P, Chen H B, Zheng Z G 2017 Front. Phys. 12 120502

    [30]

    Colomés E, Zhan Z, Marian D, Oriols X 2017 Phys. Rev. B 96 075135

    [31]

    Gao T F, Chen J C 2009 J. Phys. A:Math. Theor. 42 065002

    [32]

    Stella L, Lorenz C D, Kantorovich L 2014 Phys. Rev. B 89 1

    [33]

    Li G, Tu Z C 2016 Sci. China:Phys. Mech. Astron. 59 640501

    [34]

    Zheng Z G, Cross M C, Hu G 2002 Phys. Rev. Lett. 89 154102

    [35]

    Wang H Y, Bao J D 2007 Physica A 374 33

    [36]

    Fan L M, L M T, Huang R Z, Gao T F, Zheng Z G 2017 Acta Phys. Sin. 66 010501 (in Chinese) [范黎明, 吕明涛, 黄仁忠, 高天附, 郑志刚 2017 66 010501]

    [37]

    Lu S C, Ou Y L, Ai B Q 2017 Physica A 482 501

    [38]

    Ai B Q, He Y F, Zhong W R 2014 J. Chem. Phys. 141 194111

  • [1] 杨楠楠, 王尚民, 张家良, 温小琼, 赵凯. 改进型机-电模型及脉冲等离子体推力器能量转化效率分析.  , 2024, 73(21): 215202. doi: 10.7498/aps.73.20241117
    [2] 许莫非, 于翔, 张世健, Gennady Efimovich Remnev, 乐小云. 一种用于强流脉冲离子束的束流输出稳定性实时监测方法.  , 2023, 72(17): 175205. doi: 10.7498/aps.72.20230854
    [3] 刘艳艳, 孙佳明, 范黎明, 高天附, 郑志刚. 非保守力作用下二维耦合布朗粒子的定向输运.  , 2023, 72(4): 040501. doi: 10.7498/aps.72.20221741
    [4] 陈蒋力, 陈少强, 任峰, 胡海豹. 基于壁面压力反馈的圆柱绕流减阻智能控制.  , 2022, 71(8): 084701. doi: 10.7498/aps.71.20212171
    [5] 曹佳慧, 刘艳艳, 艾保全, 黄仁忠, 高天附. 空间非均匀摩擦棘轮的输运性能.  , 2021, 70(23): 230201. doi: 10.7498/aps.70.20210802
    [6] 李东阳, 张远宪, 欧永雄, 普小云. 聚二甲基硅氧烷微流道中光流控荧光共振能量转移激光.  , 2019, 68(5): 054203. doi: 10.7498/aps.68.20181696
    [7] 刘晨昊, 刘天宇, 黄仁忠, 高天附, 舒咬根. 粗糙势中耦合布朗粒子的定向输运性能.  , 2019, 68(24): 240501. doi: 10.7498/aps.68.20191203
    [8] 贺书凯, 齐伟, 矫金龙, 董克攻, 邓志刚, 滕建, 张博, 张智猛, 洪伟, 张辉, 沈百飞, 谷渝秋. 基于带电粒子活化法开展的SGⅡ-U皮秒激光质子加速实验研究.  , 2018, 67(22): 225202. doi: 10.7498/aps.67.20181504
    [9] 范黎明, 吕明涛, 黄仁忠, 高天附, 郑志刚. 反馈控制棘轮的定向输运效率研究.  , 2017, 66(1): 010501. doi: 10.7498/aps.66.010501
    [10] 苟竞, 刘俊勇, 魏震波, Gareth Taylor, 刘友波. 基于多尺度熵的电力能量流复杂性分析.  , 2014, 63(20): 208402. doi: 10.7498/aps.63.208402
    [11] 吴魏霞, 郑志刚. 二维势场中弹性耦合粒子的定向输运研究.  , 2013, 62(19): 190511. doi: 10.7498/aps.62.190511
    [12] 张亮, 付伟基, 张立凤, 吴海燕, 黄泓. Couette流能量的演变.  , 2010, 59(3): 1437-1448. doi: 10.7498/aps.59.1437
    [13] 宫 野, 张建红, 王晓东, 吴 迪, 刘金远, 刘 悦, 王晓钢, 马腾才. 强流脉冲离子束辐照双层靶能量沉积的数值模拟.  , 2008, 57(8): 5095-5099. doi: 10.7498/aps.57.5095
    [14] 关庆丰, 安春香, 秦 颖, 邹建新, 郝胜志, 张庆瑜, 董 闯, 邹广田. 强流脉冲电子束应力诱发的微观结构.  , 2005, 54(8): 3927-3934. doi: 10.7498/aps.54.3927
    [15] 黄华, 范植开, 谭杰, 马乔生, 甘延青, 常安碧. 长脉冲相对论速调管中束流脉冲缩短的研究.  , 2004, 53(4): 1129-1135. doi: 10.7498/aps.53.1129
    [16] 朱伦武, 翁甲强, 高远, 方锦清. 强流加速器中束晕-混沌的延迟反馈控制.  , 2002, 51(7): 1483-1488. doi: 10.7498/aps.51.1483
    [17] 高远, 翁甲强, 方锦清, 罗晓曙. 强流加速器中束晕-混沌的小波间隔反馈控制.  , 2001, 50(8): 1440-1446. doi: 10.7498/aps.50.1440
    [18] 方锦清, 高远, 翁甲强, 罗晓曙, 陈关荣. 小波函数反馈法实现对强流束晕混沌的有效控制.  , 2001, 50(3): 435-439. doi: 10.7498/aps.50.435
    [19] 李翔, 郭光灿. 参量过程中的带间脉冲流.  , 2000, 49(4): 702-707. doi: 10.7498/aps.49.702
    [20] 田人和, 张荟星. 强流重离子束在轴对称电场中的温度和能量展宽.  , 1992, 41(3): 408-412. doi: 10.7498/aps.41.408
计量
  • 文章访问数:  6449
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-31
  • 修回日期:  2018-07-11
  • 刊出日期:  2018-10-05

/

返回文章
返回
Baidu
map