Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Stokes efficiency in the overdamped Brownian ratchet

Lü Ming-Tao Yan Ming-Yue Ai Bao-Quan Gao Tian-Fu Zheng Zhi-Gang

Citation:

Stokes efficiency in the overdamped Brownian ratchet

Lü Ming-Tao, Yan Ming-Yue, Ai Bao-Quan, Gao Tian-Fu, Zheng Zhi-Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Molecular motors in life activities of cell are known to operate efficiently.They could convert molecular-scale chemical energy into macroscopic-scale mechanical work with high efficiency.In order to acquire the transport mechanism of the molecular motor,the Brownian ratchet has been proposed to explore the property of directed transport and energy conversion.There are different kinds of Brownian ratchet models like flashing ratchets,rocking ratchets,and time-asymmetric ratchets and so on.Through investigating the performance of Brownian ratchet moving in periodic potential,the directed transport of ratchet could be explained,and the effective usage of ratchet energy for directed transport could also be improved.Recently,optimizing the transport of Brownian ratchet has aroused the interest of researchers.It is found that the viscous resistance could reinforce the directed transport of the Brownian particle in damping liquid.Meanwhile,a large number of conclusions indicate that the transport of Brownian ratchets would be enhanced if the asymmetry of the potential is changed.Those results show that the influences of the external potential and the damping force on the particle flow cannot be neglected.Hence in this paper,the effects of the potential structure and the temperature of heat bath on transport are discussed. Furthermore,how to use the ratchet energy effectively has been investigated in recent years.When the Brownian motor operates with load,the input energy is reduced.More importantly,the energy transformation efficiency defined as the ratio of the useful work done against the load to the input energy is assumed to be a zero value in the absence of load.With the help of stochastic energetic theory proposed by Sekimoto,the Stokes efficiency has been used to explore the performance of the Brownian ratchet.So far,the numerical solution has been used extensively in most theoretical investigations.Nevertheless,in our work,the Stokes efficiency is discussed analytically for explaining the mechanism of directed transport.We consider the transport performance of the Brownian ratchet described by the Fokker Planck equation which is corresponding to the Langevin equation under time-varying external force and thermal noise.Mainly, the effects of potential asymmetry,external force,height of the barrier,and intensity of the thermal noise on transport are discussed in detail.It is found that the transport direction of Brownian ratchet will be reversed under the condition of appropriate potential structures,and the probability current can reach a maximal value by changing the asymmetry of potential.It is worthwhile to point out that the performance of directed transport of the ratchet can be improved when an appropriate amplitude of the external force is applied.Meanwhile,there is an optimal value of the barrier height at which the Stokes efficiency reaches a maximal value and the directed transport of ratchet is enhanced.Through our conclusions,the ratchets of different structures could be designed for improving the transport property of Brownian motor.And the results have helpful theoretical guidance not only in the aspect of medical delivery but also in the control of nano-devices.
      Corresponding author: Gao Tian-Fu, tianfugao@synu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grand Nos. 11475022, 11347003), the Scientific Research Funds of Huaqiao University, China and the Excellent Talents Program of Shenyang Normal University, China (Grand No. 91400114005), and the Teaching Research Program of Thermodynamics and Statistical Physics in the Institution of Higher Education, China.
    [1]

    Xie P 2010 Int. J. Biol. Sci. 6 665

    [2]

    Doering C R 1995 Nuovo Cimento 17 685

    [3]

    Astumian R D, Bier M 1994 Phys. Rev. Lett. 72 1766

    [4]

    Gao T F, Chen J C 2009 J. Phys. A: Math. Theor. 42 065002

    [5]

    Ai B Q, He Y F, Zhong W R 2011 Phys. Rev. E 83 051106

    [6]

    Zhang H W, Wen S T, Zhang H T, Li Y X, Chen G R 2012 Chin. Phys. B 21 078701

    [7]

    Gao T F, Liu F S, Chen J C 2012 Chin. Phys. B 21 020502

    [8]

    Zhan Y, Bao J D, Zhuo Y Z 1997 Acta Phys. Sin. 46 1880 (in Chinese) [展永, 包景东, 卓益忠 1997 46 1880]

    [9]

    Ai B Q, He Y F, Li F G, Zhong W R 2013 Phys. Rev. E 138 154107

    [10]

    Fan L M, L M T, Huang R Z, Gao T F, Zheng Z G 2017 Acta Phys. Sin. 66 010501 (in Chinese) [范黎明, 吕明涛, 黄仁忠, 高天附, 郑志刚 2017 66 010501]

    [11]

    Sahoo M, Jayannavar A M 2017 Physica A 465 40

    [12]

    Sekimoto K 1997 J. Phys. Soc. Jpn. 66 1234

    [13]

    Parrondo J M R, Cisneros B J D 2002 Physics A 75 179

    [14]

    Wang H, Oster G 2002 EPL 57 134

    [15]

    Li Y X, Wu X Z, Zhuo Y Z 2000 Physica A 286 147

    [16]

    Chueshov I, Kuksin S 2008 Physica D 237 1352

    [17]

    Winkler M, Abel M 2015 Phys. Rev. E 92 063002

    [18]

    Anders M 2013 Phys. Rev. E 92 063002

    [19]

    Sztuk E, Przekop R, Gradoń L 2012 Chem. Process Eng. 33 279

    [20]

    Spiechowicz J, Luczka J, Machura L 2016 Physics 2016 054038

    [21]

    Zheng Z G, Cross M C, Hu G 2002 Phys. Rev. Lett. 89 154102

    [22]

    Li C P, Han Y R, Zhan Y, Hu J J, Zhang L G, Qu J (in Chinese) [李晨璞, 韩英荣, 展永, 胡金江, 张礼刚, 曲蛟 2013 62 230051]

    [23]

    Zeng C H, Wang H 2012 Chin. Phys. B 21 76

    [24]

    Ai B Q 2004 Ph. D. Dissertation (Guangzhou: Sun Yatsen University) (in Chinese) [艾保全 2004 博士学位论文(广州: 中山大学)]

    [25]

    Kamegawa H, Hondou T, Takagi F 1998 Phys. Rev. Lett. 80 5251

    [26]

    Ai B Q, Xie H Z, Liao H Y, Liu L G 2006 J. Stat. Mech. 50 09016

    [27]

    Bartussek R, Hanggi P, Lindner B, Schimansky Geier L 1997 Physica D 109 17

    [28]

    Kula J, Czernik T, Luczka J 1998 Phys. Rev. Lett. 80 1377

    [29]

    Linke H 2002 Appl. Phys. A: Mater. Sci. Process. 75 167

    [30]

    Heuvel MGLVD, Dekker C 2007 Science 317 333

    [31]

    Braun O M, Kivshar Y S 1998 Phys. Rep. 306 1

    [32]

    Landa P S, McClintock P V E 2000 Phys. Rep. 323 1

  • [1]

    Xie P 2010 Int. J. Biol. Sci. 6 665

    [2]

    Doering C R 1995 Nuovo Cimento 17 685

    [3]

    Astumian R D, Bier M 1994 Phys. Rev. Lett. 72 1766

    [4]

    Gao T F, Chen J C 2009 J. Phys. A: Math. Theor. 42 065002

    [5]

    Ai B Q, He Y F, Zhong W R 2011 Phys. Rev. E 83 051106

    [6]

    Zhang H W, Wen S T, Zhang H T, Li Y X, Chen G R 2012 Chin. Phys. B 21 078701

    [7]

    Gao T F, Liu F S, Chen J C 2012 Chin. Phys. B 21 020502

    [8]

    Zhan Y, Bao J D, Zhuo Y Z 1997 Acta Phys. Sin. 46 1880 (in Chinese) [展永, 包景东, 卓益忠 1997 46 1880]

    [9]

    Ai B Q, He Y F, Li F G, Zhong W R 2013 Phys. Rev. E 138 154107

    [10]

    Fan L M, L M T, Huang R Z, Gao T F, Zheng Z G 2017 Acta Phys. Sin. 66 010501 (in Chinese) [范黎明, 吕明涛, 黄仁忠, 高天附, 郑志刚 2017 66 010501]

    [11]

    Sahoo M, Jayannavar A M 2017 Physica A 465 40

    [12]

    Sekimoto K 1997 J. Phys. Soc. Jpn. 66 1234

    [13]

    Parrondo J M R, Cisneros B J D 2002 Physics A 75 179

    [14]

    Wang H, Oster G 2002 EPL 57 134

    [15]

    Li Y X, Wu X Z, Zhuo Y Z 2000 Physica A 286 147

    [16]

    Chueshov I, Kuksin S 2008 Physica D 237 1352

    [17]

    Winkler M, Abel M 2015 Phys. Rev. E 92 063002

    [18]

    Anders M 2013 Phys. Rev. E 92 063002

    [19]

    Sztuk E, Przekop R, Gradoń L 2012 Chem. Process Eng. 33 279

    [20]

    Spiechowicz J, Luczka J, Machura L 2016 Physics 2016 054038

    [21]

    Zheng Z G, Cross M C, Hu G 2002 Phys. Rev. Lett. 89 154102

    [22]

    Li C P, Han Y R, Zhan Y, Hu J J, Zhang L G, Qu J (in Chinese) [李晨璞, 韩英荣, 展永, 胡金江, 张礼刚, 曲蛟 2013 62 230051]

    [23]

    Zeng C H, Wang H 2012 Chin. Phys. B 21 76

    [24]

    Ai B Q 2004 Ph. D. Dissertation (Guangzhou: Sun Yatsen University) (in Chinese) [艾保全 2004 博士学位论文(广州: 中山大学)]

    [25]

    Kamegawa H, Hondou T, Takagi F 1998 Phys. Rev. Lett. 80 5251

    [26]

    Ai B Q, Xie H Z, Liao H Y, Liu L G 2006 J. Stat. Mech. 50 09016

    [27]

    Bartussek R, Hanggi P, Lindner B, Schimansky Geier L 1997 Physica D 109 17

    [28]

    Kula J, Czernik T, Luczka J 1998 Phys. Rev. Lett. 80 1377

    [29]

    Linke H 2002 Appl. Phys. A: Mater. Sci. Process. 75 167

    [30]

    Heuvel MGLVD, Dekker C 2007 Science 317 333

    [31]

    Braun O M, Kivshar Y S 1998 Phys. Rep. 306 1

    [32]

    Landa P S, McClintock P V E 2000 Phys. Rep. 323 1

  • [1] Yang Wen-Bin, Zhang Hua-Lei, Qi Xin-Hua, Che Qing-Feng, Zhou Jiang-Ning, Bai Bing, Chen Shuang, Mu Jin-He. Coherent anti-Stokes Raman scattering spectral calculation and vibrational-rotational temperature measurement of non-equilibrium plasma flow field. Acta Physica Sinica, 2024, 73(15): 154202. doi: 10.7498/aps.73.20240455
    [2] Tian Zi-Yang, Zhao Hui-Jie, Wei Hao-Yun, Li Yan. Thermometry in dynamic and high-temperature combustion filed based on hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering. Acta Physica Sinica, 2021, 70(21): 214203. doi: 10.7498/aps.70.20211144
    [3] Wang Cong, Lü Dong-Xiang. Theoretical study of picosecond anti-Stokes Raman frequency converter based on pump-probe method. Acta Physica Sinica, 2021, 70(9): 094202. doi: 10.7498/aps.70.20201353
    [4] Li Jian-Kang, Li Rui. Numerical simulation study of surface enhancement coherent anti-Stokes Raman scattering reinforced substrate. Acta Physica Sinica, 2021, 70(10): 104207. doi: 10.7498/aps.70.20201773
    [5] Liu Chen-Hao, Liu Tian-Yu, Huang Ren-Zhong, Gao Tian-Fu, Shu Yao-Gen. Transport performance of coupled Brownian particles in rough ratchet. Acta Physica Sinica, 2019, 68(24): 240501. doi: 10.7498/aps.68.20191203
    [6] Peng Ya-Jing, Sun Shuang, Song Yun-Fei, Yang Yan-Qiang. Coherent anti-Stokes Raman scattering spectrum of vibrational properties of liquid nitromethane molecules. Acta Physica Sinica, 2018, 67(2): 024208. doi: 10.7498/aps.67.20171828
    [7] Hou Guo-Hui, Luo Teng, Chen Bing-Ling, Liu Jie, Lin Zi-Yang, Chen Dan-Ni, Qu Jun-Le. Experimental study on two-photon fluorescence and coherent anti-Stokes Raman scattering microscopy. Acta Physica Sinica, 2017, 66(10): 104204. doi: 10.7498/aps.66.104204
    [8] Zheng Juan-Juan, Yao Bao-Li, Shao Xiao-Peng. Nonresonant background suppression in wide-field Coherent anti-Stokes Raman scattering microscopy with transport of intensity equation based phase imaging. Acta Physica Sinica, 2017, 66(11): 114206. doi: 10.7498/aps.66.114206
    [9] Liu Shuang-Long, Liu Wei, Chen Dan-Ni, Qu Jun-Le, Niu Han-Ben. Research on coherent anti-Stokes Raman scattering microscopy. Acta Physica Sinica, 2016, 65(6): 064204. doi: 10.7498/aps.65.064204
    [10] Zhang Sai-Wen, Chen Dan-Ni, Liu Shuang-Long, Liu Wei, Niu Han-Ben. Nanometer resolution coherent anti-Stokes Raman scattering microscopic imaging. Acta Physica Sinica, 2015, 64(22): 223301. doi: 10.7498/aps.64.223301
    [11] Li Ya-Hui, Liang Run-Fu, Qiu Jun-Peng, Lin Zi-Yang, Qu Jun-Le, Liu Li-Xin, Yin Jun, Niu Han-Ben. Vector analysis of the coherent anti-Stokes Raman scattering signals generated under the tightly focused condition. Acta Physica Sinica, 2014, 63(23): 233301. doi: 10.7498/aps.63.233301
    [12] Liu Shuang-Long, Liu Wei, Chen Dan-Ni, Niu Han-Ben. Generation of dark hollow beams used in sub-diffraction-limit imaging in coherent anti-Stokes Raman scattering microscopy. Acta Physica Sinica, 2014, 63(21): 214601. doi: 10.7498/aps.63.214601
    [13] Yin Jun, Yu Feng, Hou Guo-Hui, Liang Run-Fu, Tian Yu-Liang, Lin Zi-Yang, Niu Han-Ben. Theoretical and experimental study on the multi-color broadband coherent anti-Stokes Raman scattering processes. Acta Physica Sinica, 2014, 63(7): 073301. doi: 10.7498/aps.63.073301
    [14] Liu Wei, Chen Dan-Ni, Liu Shuang-Long, Niu Han-Ben. Diffraction barrier breakthrough in coherent anti-Stokes Raman scattering microscopy and detection limitanalysis. Acta Physica Sinica, 2013, 62(16): 164202. doi: 10.7498/aps.62.164202
    [15] Shen Xiang-Wei, Yu Chong-Xiu, Sang Xin-Zhu, Yuan Jin-Hui, Han Ying, Xia Chang-Ming, Hou Lan-Tian, Rao Fen, Xia Min, Yin Xiao-Li. High efficient anti-Stokes signal conversion in photonic crystal fiber. Acta Physica Sinica, 2012, 61(4): 044203. doi: 10.7498/aps.61.044203
    [16] Wei Yan, Hu Hui-Fang, Wang Zhi-Yong, Cheng Cai-Ping, Chen Nan-Ting, Xie Neng. Theoretical research on the electronic structure and transport properties of nitrogen doping chiral carbon nanotubes. Acta Physica Sinica, 2011, 60(2): 027307. doi: 10.7498/aps.60.027307
    [17] Yu Ling-Yao, Yin Jun, Wan Hui, Liu Xing, Qu Jun-Le, Niu Han-Ben, Lin Zi-Yang. Study on the method and experiment of time-resolved coherent anti-Stokes Raman scattering using supercontinuum excitation. Acta Physica Sinica, 2010, 59(8): 5406-5411. doi: 10.7498/aps.59.5406
    [18] Zhang Wei, Qian Zheng-Nan, Sui Yu, Liu Yu-Qiang, Su Wen-Hui, Zhang Ming, Liu Zhu-Hong, Liu Guo-Dong, Wu Guang-Heng. Magnetism and transport properties of Heusler alloy Co2TiSn. Acta Physica Sinica, 2005, 54(10): 4879-4883. doi: 10.7498/aps.54.4879
    [19] Li Wei, Zhao Tong-Jun, Guo Hong-Yong, Ji Qing, Zhan Yong. A nonuniform ratchet model with Gausstransition rates for Brownian motor. Acta Physica Sinica, 2004, 53(11): 3684-3689. doi: 10.7498/aps.53.3684
    [20] DENG WEN-JI. PROBABILITY CURRENTS AND CONSERVATION OF PROBABILITY IN HILBERT SPACE. Acta Physica Sinica, 2001, 50(8): 1425-1428. doi: 10.7498/aps.50.1425
Metrics
  • Abstract views:  6542
  • PDF Downloads:  172
  • Cited By: 0
Publishing process
  • Received Date:  27 June 2017
  • Accepted Date:  27 August 2017
  • Published Online:  05 November 2017

/

返回文章
返回
Baidu
map