搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过阻尼布朗棘轮的斯托克斯效率研究

吕明涛 延明月 艾保全 高天附 郑志刚

引用本文:
Citation:

过阻尼布朗棘轮的斯托克斯效率研究

吕明涛, 延明月, 艾保全, 高天附, 郑志刚

Stokes efficiency in the overdamped Brownian ratchet

Lü Ming-Tao, Yan Ming-Yue, Ai Bao-Quan, Gao Tian-Fu, Zheng Zhi-Gang
PDF
导出引用
  • 根据随机能量理论解析得到阻尼环境中布朗粒子的概率流和斯托克斯效率,并进一步研究布朗粒子的输运性能.详细讨论了空间的不对称性、外偏置力及外势结构等对棘轮定向输运的影响.研究发现,合适的外偏置力能使棘轮的定向输运达到最强.通过调节外势的不对称性可使棘轮中粒子的运动反向,当选择合适的空间不对称性时布朗粒子的反向输运可获得最强.此外,一定条件下合适的外势高度也能增强棘轮输运,且能使粒子克服黏滞阻力的斯托克斯效率达到最大.所得结论能够启发实验上设计合适的外势及外偏置来优化布朗棘轮的定向输运性能,并为生物纳米器件的研制提供一定的理论参考.
    Molecular motors in life activities of cell are known to operate efficiently.They could convert molecular-scale chemical energy into macroscopic-scale mechanical work with high efficiency.In order to acquire the transport mechanism of the molecular motor,the Brownian ratchet has been proposed to explore the property of directed transport and energy conversion.There are different kinds of Brownian ratchet models like flashing ratchets,rocking ratchets,and time-asymmetric ratchets and so on.Through investigating the performance of Brownian ratchet moving in periodic potential,the directed transport of ratchet could be explained,and the effective usage of ratchet energy for directed transport could also be improved.Recently,optimizing the transport of Brownian ratchet has aroused the interest of researchers.It is found that the viscous resistance could reinforce the directed transport of the Brownian particle in damping liquid.Meanwhile,a large number of conclusions indicate that the transport of Brownian ratchets would be enhanced if the asymmetry of the potential is changed.Those results show that the influences of the external potential and the damping force on the particle flow cannot be neglected.Hence in this paper,the effects of the potential structure and the temperature of heat bath on transport are discussed. Furthermore,how to use the ratchet energy effectively has been investigated in recent years.When the Brownian motor operates with load,the input energy is reduced.More importantly,the energy transformation efficiency defined as the ratio of the useful work done against the load to the input energy is assumed to be a zero value in the absence of load.With the help of stochastic energetic theory proposed by Sekimoto,the Stokes efficiency has been used to explore the performance of the Brownian ratchet.So far,the numerical solution has been used extensively in most theoretical investigations.Nevertheless,in our work,the Stokes efficiency is discussed analytically for explaining the mechanism of directed transport.We consider the transport performance of the Brownian ratchet described by the Fokker Planck equation which is corresponding to the Langevin equation under time-varying external force and thermal noise.Mainly, the effects of potential asymmetry,external force,height of the barrier,and intensity of the thermal noise on transport are discussed in detail.It is found that the transport direction of Brownian ratchet will be reversed under the condition of appropriate potential structures,and the probability current can reach a maximal value by changing the asymmetry of potential.It is worthwhile to point out that the performance of directed transport of the ratchet can be improved when an appropriate amplitude of the external force is applied.Meanwhile,there is an optimal value of the barrier height at which the Stokes efficiency reaches a maximal value and the directed transport of ratchet is enhanced.Through our conclusions,the ratchets of different structures could be designed for improving the transport property of Brownian motor.And the results have helpful theoretical guidance not only in the aspect of medical delivery but also in the control of nano-devices.
      通信作者: 高天附, tianfugao@synu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11475022,11347003)、华侨大学科研启动费项目和沈阳师范大学优秀人才支持计划(批准号:91400114005)和高等学校热力学与统计物理课程教学研究项目资助的课题.
      Corresponding author: Gao Tian-Fu, tianfugao@synu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grand Nos. 11475022, 11347003), the Scientific Research Funds of Huaqiao University, China and the Excellent Talents Program of Shenyang Normal University, China (Grand No. 91400114005), and the Teaching Research Program of Thermodynamics and Statistical Physics in the Institution of Higher Education, China.
    [1]

    Xie P 2010 Int. J. Biol. Sci. 6 665

    [2]

    Doering C R 1995 Nuovo Cimento 17 685

    [3]

    Astumian R D, Bier M 1994 Phys. Rev. Lett. 72 1766

    [4]

    Gao T F, Chen J C 2009 J. Phys. A: Math. Theor. 42 065002

    [5]

    Ai B Q, He Y F, Zhong W R 2011 Phys. Rev. E 83 051106

    [6]

    Zhang H W, Wen S T, Zhang H T, Li Y X, Chen G R 2012 Chin. Phys. B 21 078701

    [7]

    Gao T F, Liu F S, Chen J C 2012 Chin. Phys. B 21 020502

    [8]

    Zhan Y, Bao J D, Zhuo Y Z 1997 Acta Phys. Sin. 46 1880 (in Chinese) [展永, 包景东, 卓益忠 1997 46 1880]

    [9]

    Ai B Q, He Y F, Li F G, Zhong W R 2013 Phys. Rev. E 138 154107

    [10]

    Fan L M, L M T, Huang R Z, Gao T F, Zheng Z G 2017 Acta Phys. Sin. 66 010501 (in Chinese) [范黎明, 吕明涛, 黄仁忠, 高天附, 郑志刚 2017 66 010501]

    [11]

    Sahoo M, Jayannavar A M 2017 Physica A 465 40

    [12]

    Sekimoto K 1997 J. Phys. Soc. Jpn. 66 1234

    [13]

    Parrondo J M R, Cisneros B J D 2002 Physics A 75 179

    [14]

    Wang H, Oster G 2002 EPL 57 134

    [15]

    Li Y X, Wu X Z, Zhuo Y Z 2000 Physica A 286 147

    [16]

    Chueshov I, Kuksin S 2008 Physica D 237 1352

    [17]

    Winkler M, Abel M 2015 Phys. Rev. E 92 063002

    [18]

    Anders M 2013 Phys. Rev. E 92 063002

    [19]

    Sztuk E, Przekop R, Gradoń L 2012 Chem. Process Eng. 33 279

    [20]

    Spiechowicz J, Luczka J, Machura L 2016 Physics 2016 054038

    [21]

    Zheng Z G, Cross M C, Hu G 2002 Phys. Rev. Lett. 89 154102

    [22]

    Li C P, Han Y R, Zhan Y, Hu J J, Zhang L G, Qu J (in Chinese) [李晨璞, 韩英荣, 展永, 胡金江, 张礼刚, 曲蛟 2013 62 230051]

    [23]

    Zeng C H, Wang H 2012 Chin. Phys. B 21 76

    [24]

    Ai B Q 2004 Ph. D. Dissertation (Guangzhou: Sun Yatsen University) (in Chinese) [艾保全 2004 博士学位论文(广州: 中山大学)]

    [25]

    Kamegawa H, Hondou T, Takagi F 1998 Phys. Rev. Lett. 80 5251

    [26]

    Ai B Q, Xie H Z, Liao H Y, Liu L G 2006 J. Stat. Mech. 50 09016

    [27]

    Bartussek R, Hanggi P, Lindner B, Schimansky Geier L 1997 Physica D 109 17

    [28]

    Kula J, Czernik T, Luczka J 1998 Phys. Rev. Lett. 80 1377

    [29]

    Linke H 2002 Appl. Phys. A: Mater. Sci. Process. 75 167

    [30]

    Heuvel MGLVD, Dekker C 2007 Science 317 333

    [31]

    Braun O M, Kivshar Y S 1998 Phys. Rep. 306 1

    [32]

    Landa P S, McClintock P V E 2000 Phys. Rep. 323 1

  • [1]

    Xie P 2010 Int. J. Biol. Sci. 6 665

    [2]

    Doering C R 1995 Nuovo Cimento 17 685

    [3]

    Astumian R D, Bier M 1994 Phys. Rev. Lett. 72 1766

    [4]

    Gao T F, Chen J C 2009 J. Phys. A: Math. Theor. 42 065002

    [5]

    Ai B Q, He Y F, Zhong W R 2011 Phys. Rev. E 83 051106

    [6]

    Zhang H W, Wen S T, Zhang H T, Li Y X, Chen G R 2012 Chin. Phys. B 21 078701

    [7]

    Gao T F, Liu F S, Chen J C 2012 Chin. Phys. B 21 020502

    [8]

    Zhan Y, Bao J D, Zhuo Y Z 1997 Acta Phys. Sin. 46 1880 (in Chinese) [展永, 包景东, 卓益忠 1997 46 1880]

    [9]

    Ai B Q, He Y F, Li F G, Zhong W R 2013 Phys. Rev. E 138 154107

    [10]

    Fan L M, L M T, Huang R Z, Gao T F, Zheng Z G 2017 Acta Phys. Sin. 66 010501 (in Chinese) [范黎明, 吕明涛, 黄仁忠, 高天附, 郑志刚 2017 66 010501]

    [11]

    Sahoo M, Jayannavar A M 2017 Physica A 465 40

    [12]

    Sekimoto K 1997 J. Phys. Soc. Jpn. 66 1234

    [13]

    Parrondo J M R, Cisneros B J D 2002 Physics A 75 179

    [14]

    Wang H, Oster G 2002 EPL 57 134

    [15]

    Li Y X, Wu X Z, Zhuo Y Z 2000 Physica A 286 147

    [16]

    Chueshov I, Kuksin S 2008 Physica D 237 1352

    [17]

    Winkler M, Abel M 2015 Phys. Rev. E 92 063002

    [18]

    Anders M 2013 Phys. Rev. E 92 063002

    [19]

    Sztuk E, Przekop R, Gradoń L 2012 Chem. Process Eng. 33 279

    [20]

    Spiechowicz J, Luczka J, Machura L 2016 Physics 2016 054038

    [21]

    Zheng Z G, Cross M C, Hu G 2002 Phys. Rev. Lett. 89 154102

    [22]

    Li C P, Han Y R, Zhan Y, Hu J J, Zhang L G, Qu J (in Chinese) [李晨璞, 韩英荣, 展永, 胡金江, 张礼刚, 曲蛟 2013 62 230051]

    [23]

    Zeng C H, Wang H 2012 Chin. Phys. B 21 76

    [24]

    Ai B Q 2004 Ph. D. Dissertation (Guangzhou: Sun Yatsen University) (in Chinese) [艾保全 2004 博士学位论文(广州: 中山大学)]

    [25]

    Kamegawa H, Hondou T, Takagi F 1998 Phys. Rev. Lett. 80 5251

    [26]

    Ai B Q, Xie H Z, Liao H Y, Liu L G 2006 J. Stat. Mech. 50 09016

    [27]

    Bartussek R, Hanggi P, Lindner B, Schimansky Geier L 1997 Physica D 109 17

    [28]

    Kula J, Czernik T, Luczka J 1998 Phys. Rev. Lett. 80 1377

    [29]

    Linke H 2002 Appl. Phys. A: Mater. Sci. Process. 75 167

    [30]

    Heuvel MGLVD, Dekker C 2007 Science 317 333

    [31]

    Braun O M, Kivshar Y S 1998 Phys. Rep. 306 1

    [32]

    Landa P S, McClintock P V E 2000 Phys. Rep. 323 1

  • [1] 杨文斌, 张华磊, 齐新华, 车庆丰, 周江宁, 白冰, 陈爽, 母金河. 非平衡等离子体流场相干反斯托克斯拉曼散射光谱计算及振转温度测量.  , 2024, 73(15): 154202. doi: 10.7498/aps.73.20240455
    [2] 田子阳, 赵会杰, 尉昊赟, 李岩. 基于混合飞秒/皮秒相干反斯托克斯拉曼散射的动态高温燃烧场温度测量.  , 2021, 70(21): 214203. doi: 10.7498/aps.70.20211144
    [3] 王聪, 吕冬翔. 基于抽运-探测法的皮秒反斯托克斯拉曼频移器的理论研究.  , 2021, 70(9): 094202. doi: 10.7498/aps.70.20201353
    [4] 李健康, 李睿. 利用数值模拟研究表面增强相干反斯托克斯拉曼散射增强基底.  , 2021, 70(10): 104207. doi: 10.7498/aps.70.20201773
    [5] 刘晨昊, 刘天宇, 黄仁忠, 高天附, 舒咬根. 粗糙势中耦合布朗粒子的定向输运性能.  , 2019, 68(24): 240501. doi: 10.7498/aps.68.20191203
    [6] 彭亚晶, 孙爽, 宋云飞, 杨延强. 液相硝基甲烷分子振动特性的相干反斯托克斯拉曼散射光谱.  , 2018, 67(2): 024208. doi: 10.7498/aps.67.20171828
    [7] 侯国辉, 罗腾, 陈秉灵, 刘杰, 林子扬, 陈丹妮, 屈军乐. 双光子荧光与相干反斯托克斯拉曼散射显微成像技术的实验研究.  , 2017, 66(10): 104204. doi: 10.7498/aps.66.104204
    [8] 郑娟娟, 姚保利, 邵晓鹏. 基于光强传输方程相位成像的宽场相干反斯托克斯拉曼散射显微背景抑制.  , 2017, 66(11): 114206. doi: 10.7498/aps.66.114206
    [9] 刘双龙, 刘伟, 陈丹妮, 屈军乐, 牛憨笨. 相干反斯托克斯拉曼散射显微成像技术研究.  , 2016, 65(6): 064204. doi: 10.7498/aps.65.064204
    [10] 张赛文, 陈丹妮, 刘双龙, 刘伟, 牛憨笨. 纳米分辨相干反斯托克斯拉曼散射显微成像.  , 2015, 64(22): 223301. doi: 10.7498/aps.64.223301
    [11] 李亚晖, 梁闰富, 邱俊鹏, 林子扬, 屈军乐, 刘立新, 尹君, 牛憨笨. 紧聚焦条件下相干反斯托克斯拉曼散射信号场的矢量分析.  , 2014, 63(23): 233301. doi: 10.7498/aps.63.233301
    [12] 刘双龙, 刘伟, 陈丹妮, 牛憨笨. 超衍射极限相干反斯托克斯拉曼散射显微成像技术中空心光束的形成.  , 2014, 63(21): 214601. doi: 10.7498/aps.63.214601
    [13] 尹君, 余锋, 侯国辉, 梁闰富, 田宇亮, 林子扬, 牛憨笨. 多色宽带相干反斯托克斯拉曼散射过程的理论与实验研究.  , 2014, 63(7): 073301. doi: 10.7498/aps.63.073301
    [14] 刘伟, 陈丹妮, 刘双龙, 牛憨笨. 超衍射极限相干反斯托克斯拉曼散射显微成像技术及其探测极限分析.  , 2013, 62(16): 164202. doi: 10.7498/aps.62.164202
    [15] 申向伟, 余重秀, 桑新柱, 苑金辉, 韩颖, 夏长明, 侯蓝田, 饶芬, 夏民, 尹霄丽. 光子晶体光纤中高效的反斯托克斯信号产生.  , 2012, 61(4): 044203. doi: 10.7498/aps.61.044203
    [16] 魏燕, 胡慧芳, 王志勇, 程彩萍, 陈南庭, 谢能. 氮掺杂手性碳纳米管的电子结构和输运特性的理论研究.  , 2011, 60(2): 027307. doi: 10.7498/aps.60.027307
    [17] 于凌尧, 尹君, 万辉, 刘星, 屈军乐, 牛憨笨, 林子扬. 基于超连续光谱激发的时间分辨相干反斯托克斯拉曼散射方法与实验研究.  , 2010, 59(8): 5406-5411. doi: 10.7498/aps.59.5406
    [18] 张 炜, 千正男, 隋 郁, 刘玉强, 苏文辉, 张 铭, 柳祝红, 刘国栋, 吴光恒. Heusler合金Co2TiSn的磁性与输运性能.  , 2005, 54(10): 4879-4883. doi: 10.7498/aps.54.4879
    [19] 李 微, 赵同军, 郭鸿涌, 纪 青, 展 永. 布朗马达的非均匀高斯跃迁模型.  , 2004, 53(11): 3684-3689. doi: 10.7498/aps.53.3684
    [20] 邓文基. 希尔伯特空间中的概率流和概率守恒.  , 2001, 50(8): 1425-1428. doi: 10.7498/aps.50.1425
计量
  • 文章访问数:  6540
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-27
  • 修回日期:  2017-08-27
  • 刊出日期:  2017-11-05

/

返回文章
返回
Baidu
map