[1] |
Lü Cheng-Ye, Chen Ying-Wei, Xie Mu-Ting, Li Xue-Yang, Yu Hong-Yu, Zhong Yang, Xiang Hong-Jun. First-principles calculation method for periodic system under external electromagnetic field. Acta Physica Sinica,
2023, 72(23): 237102.
doi: 10.7498/aps.72.20231313
|
[2] |
Yin Jia-Peng, Liu Sheng-Guang. A single long electron bunch detect electromagnetic field evolution in laser plasma. Acta Physica Sinica,
2022, 71(1): 012901.
doi: 10.7498/aps.71.20211374
|
[3] |
An Xin-Lei, Qiao Shuai, Zhang Li. Dynamic response and control of neuros based on electromagnetic field theory. Acta Physica Sinica,
2021, 70(5): 050501.
doi: 10.7498/aps.70.20201347
|
[4] |
Wang Yan-Hong, Wang Lei, Wu Jing-Zhi. Nanoscale electromagnetic field interaction generated by microtubule vibration in neurons. Acta Physica Sinica,
2021, 70(15): 158703.
doi: 10.7498/aps.70.20210421
|
[5] |
Zhu Hai-Long, Li Xue-Ying, Tong Hong-Hui. Three-dimensional numerical simulation of physical field distribution of radio frequency thermal plasma. Acta Physica Sinica,
2021, 70(15): 155202.
doi: 10.7498/aps.70.20202135
|
[6] |
Cui Sui-Han, Wu Zhong-Zhen, Xiao Shu, Chen Lei, Li Ti-Jun, Liu Liang-Liang, Ricky K Y Fu, Tian Xiu-Bo, Paul K Chu, Tan Wen-Chang. Simulation study on plasma discharge and transport in cylindrical cathode controlled by expanding electromagnetic field. Acta Physica Sinica,
2019, 68(19): 195204.
doi: 10.7498/aps.68.20190583
|
[7] |
Wang Fei-Fei, Fang Jian-Hui, Wang Ying-Li, Xu Rui-Li. Noether symmetry and Mei symmetry of a discrete holonomic mechanical system with variable mass. Acta Physica Sinica,
2014, 63(17): 170202.
doi: 10.7498/aps.63.170202
|
[8] |
Jiang Wen-An, Luo Shao-Kai. Mei symmetry leading to Mei conserved quantity of generalized Hamiltonian system. Acta Physica Sinica,
2011, 60(6): 060201.
doi: 10.7498/aps.60.060201
|
[9] |
Luo Shao-Kai, Jia Li-Qun, Xie Yin-Li. Mei conserved quantity deduced from Mei symmetry of Appell equation in a dynamical system of relative motion. Acta Physica Sinica,
2011, 60(4): 040201.
doi: 10.7498/aps.60.040201
|
[10] |
Jia Li-Qun, Zhang Yao-Yu, Yang Xin-Fang, Cui Jin-Chao, Xie Yin-Li. Type Ⅲ structural equation and Mei conserved quantity of Mei symmetry for a Lagrangian system. Acta Physica Sinica,
2010, 59(5): 2939-2941.
doi: 10.7498/aps.59.2939
|
[11] |
Jia Li-Qun, Luo Shao-Kai, Zhang Yao-Yu. Mei symmetry and Mei conserved quantity of Nielsen equation for a nonholonomic system. Acta Physica Sinica,
2008, 57(4): 2006-2010.
doi: 10.7498/aps.57.2006
|
[12] |
Jia Li-Qun, Zheng Shi-Wang, Zhang Yao-Yu. Mei symmetry and Mei conserved quantity of nonholonomic systems of non-Chetaev’s type in event space. Acta Physica Sinica,
2007, 56(10): 5575-5579.
doi: 10.7498/aps.56.5575
|
[13] |
Gu Shu-Long, Zhang Hong-Bin. Mei symmetry, Noether symmetry and Lie symmetry of an Emden system. Acta Physica Sinica,
2006, 55(11): 5594-5597.
doi: 10.7498/aps.55.5594
|
[14] |
Zhang Yi, Ge Wei-Kuan. A new conservation law from Mei symmetry for the relativistic mechanical system. Acta Physica Sinica,
2005, 54(4): 1464-1467.
doi: 10.7498/aps.54.1464
|
[15] |
Gu Shu-Long, Zhang Hong-Bin. Mei symmetry, Noether symmetry and Lie symmetry of a Vacco system. Acta Physica Sinica,
2005, 54(9): 3983-3986.
doi: 10.7498/aps.54.3983
|
[16] |
Fang Jian-Hui, Peng Yong, Liao Yong-Pan. On Mei symmetry of Lagrangian system and Hamiltonian system. Acta Physica Sinica,
2005, 54(2): 496-499.
doi: 10.7498/aps.54.496
|
[17] |
Li Hong, Fang Jian-Hui. Mei symmetry of variable mass systems with unilateral holonomic constraints. Acta Physica Sinica,
2004, 53(9): 2807-2810.
doi: 10.7498/aps.53.2807
|
[18] |
Zhang Qin, Ban Chun-Yan, Cui Jian-Zhong, Ba Qi-Xian, Lu Gui-Min, Zhang Bei-Jiang. The forced solution mechanism of alloying agents of 7075 alloy as-cast ingot und er the effects of electromagnetic field. Acta Physica Sinica,
2003, 52(10): 2642-2648.
doi: 10.7498/aps.52.2642
|
[19] |
Luo Shao-Kai. Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian system. Acta Physica Sinica,
2003, 52(12): 2941-2944.
doi: 10.7498/aps.52.2941
|
[20] |
WU QI-XUE. DOUBLE-WAVE DESCRIPTION OF THE MOTION OF SPINNING ELECTRON IN BOTH ELECTROMAGNETIC FIELD AND TWO-DIMENSIONAL HARMONIC OSCILLATOR POTENTIAL FIELD. Acta Physica Sinica,
2000, 49(11): 2118-2122.
doi: 10.7498/aps.49.2118
|