-
金属基金刚石复合材料被广泛应用和研究, 但金刚石表面预处理所导致的空位、掺杂等缺陷对金属基与金刚石界面性能有很大影响. 尽管透射电子显微镜和能谱分析等技术已用于缺陷检测, 但这些方法存在局限性. 通过计算金刚石中正电子湮灭寿命, 可以准确评估金刚石的界面缺陷. 本文利用第一性原理计算方法, 采用多种正电子湮灭算法和增强因子, 计算了金刚石理想晶体、单空位、掺杂B, Cr, Mo, Ti, W和Zr后的正电子湮灭寿命. 结果显示, 在采用局域密度泛函时, 结合Boronski & Nieminen算法以及随机相位近似限制作为湮灭增强因子时, 计算得到的正电子湮灭寿命与文献的实验结果更吻合. 同时, 金刚石中B和Cr的掺杂使正电子湮灭寿命从由单空位119.87 ps增加为148.57 ps和156.82 ps. 总体来说, 金刚石中的空位和掺杂原子缺陷都会引起正电子湮灭寿命的变化. 这些发现为理解和优化金刚石界面提供了有价值的理论依据.Metal-matrix diamond composites have been extensively used and studied, but vacancies, doping, and other defects caused by the pretreatment of the diamond surface significantly affect the interface property between the metal base and diamond. Although techniques like transmission electron microscopy and spectroscopy analysis have been used to detect defects, they present certain limitations. Calculating the positron annihilation lifetime in diamond provides an accurate assessment of interface defect in the diamond. This study uses first-principles calculation methods and adopts various positron annihilation algorithms and enhancement factors, to compute the positron annihilation lifetimes in ideal diamond crystals, single vacancies, and diamond crystals doped with B, Cr, Mo, Ti, W, and Zr. The results, obtained by using local density functional in combination with Boronski & Nieminen algorithms and random-phase approximation restriction as annihilation enhancement factors, indicate that the computed positron annihilation lifetime of diamond is 119.87 ps, which is consistent closely with the experimental result in the literature. Furthermore, after B, Cr, Mo, Ti, W, and Zr atoms are doped into diamond (doping atomic concentration of 1.6%), the positron annihilation lifetimes change from a single vacancy 119.87 ps to 148.57, 156.82, 119.05, 116.5, 117.62, and 115.74 ps respectively. This implies that the defects due to doped atoms in diamond change their positron annihilation lifetimes, with the influence varying according to the different atoms doped. Based on the calculated electron density in diamond vacancies and doped atom areas, it is discovered that doping atoms do not cause severe distortion in the diamond lattice. However, after B and Cr atoms are doped, the positron annihilation lifetime increases significantly. The primary reason is that the relatively low positron affinity of B and Cr atoms results in an extended positron residence time in the vacancy, thereby increasing the annihilation lifetime. Overall, vacancies and doped atom defects in diamond will cause its positron annihilation lifetime to change. The above conclusions provide crucial theoretical references for detecting and identifying interface defects caused by doping treatment on the diamond surface during the preparation of metal-matrix diamond composites.
-
Keywords:
- diamond /
- doping /
- positron /
- annihilation lifetime
[1] Stachel T, Luth R W 2015 Lithos 220 – 223 200
[2] Bulanova G P 1995 J. Geochem. Explor. 53 1Google Scholar
[3] Wei L, Kuo P K, Thomas R L, et al. 1993 Phys. Rev. Lett. 70 3764Google Scholar
[4] Chakraborty P, Xiong G, Cao L, et al. 2018 Carbon 139 85Google Scholar
[5] Ciupiński Ł, Kruszewski M J, Grzonka J, et al. 2017 Mater. Des. 120 170Google Scholar
[6] Kidalov S V, Shakhov F M 2009 Materials 2 2467Google Scholar
[7] May P W 2000 Philos. Trans. R. Soc. London, Ser. A 358 473Google Scholar
[8] Liao M 2021 Funct. Diamond 1 29Google Scholar
[9] Gomez H, Groves M N, Neupane M R 2021 Carbon Trends 3 100033Google Scholar
[10] Pan Y, He X, Ren S, et al. 2018 Vacuum 153 74Google Scholar
[11] Soltani H M, Tayebi M 2020 Int. J. Refract. Met. Hard Mater. 87 105172Google Scholar
[12] Pillari L K, Bakshi S R, Chaudhuri P, et al. 2020 Adv. Powder Technol. 31 3657Google Scholar
[13] Zhang X Y, Xu M, Cao S Z, et al. 2020 Diamond Relat. Mater. 104 107755Google Scholar
[14] Jia J, Bai S, Xiong D, et al. 2019 Ceram. Int. 45 10810Google Scholar
[15] Liu Z, Zheng S, Lu Z, et al. 2018 Carbon 127 548Google Scholar
[16] Wu M, Chang L, Zhang L, et al. 2017 Surf. Coat. Technol. 325 490Google Scholar
[17] Contreras Cuevas A, Bedolla Becerril E, Martínez M S, et al. 2018 Metal Matrix Composites (Cham: Springer International Publishing
[18] Bai G, Li N, Wang X, et al. 2018 J. Alloys Compd. 735 1648Google Scholar
[19] Bai G, Wang L, Zhang Y, et al. 2019 Mater. Charact. 152 265Google Scholar
[20] Liu X, Sun F, Wang L, et al. 2020 Appl. Surf. Sci. 515 146046Google Scholar
[21] Kang Q, He X, Ren S, et al. 2013 J. Alloys Compd. 576 380Google Scholar
[22] Che Q L, Chen X K, Ji Y Q, et al. 2015 Mater. Sci. Semicond. Process. 30 104Google Scholar
[23] Li J, Zhang H, Wang L, et al. 2016 Composites Part A 91 189Google Scholar
[24] Abyzov A M, Kidalov S V, Shakhov F M 2012 Appl. Therm. Eng. 48 72
[25] He J, Wang X, Zhang Y, et al. 2015 Composites Part B 68 22Google Scholar
[26] Wang L, Li J, Bai G, et al. 2019 J. Alloys Compd. 781 800Google Scholar
[27] Dannefaer S 2007 Phys. Status Solidi C 4 3605Google Scholar
[28] Avalos V, Dannefaer S 2003 Phys. B: Condens. Matter 340 – 342 76
[29] Siegel R W 1980 Annu. Rev. Mater. Sci. 10 393Google Scholar
[30] Tuomisto F, Makkonen I 2013 Rev. Mod. Phys. 85 1583Google Scholar
[31] Pu A, Bretagnon T, Kerr D, et al. 2000 Diamond Relat. Mater. 9 1450Google Scholar
[32] Sachdeva A, Sudarshan K, Pujari P, et al. 2004 Diamond Relat. Mater. 13 1719Google Scholar
[33] Hu X J, Ye J S, Liu H J, et al. 2008 Thin Solid Films 516 1699Google Scholar
[34] Jones R 2009 Diamond Relat. Mater. 18 820Google Scholar
[35] Fujii S, Nishibayashi Y, Shikata S, et al. 1995 J. Appl. Phys. 78 1510Google Scholar
[36] Eseev M, Kuziv I, Kostin A, et al. 2022 Materials 16 203Google Scholar
[37] Gonze X, Amadon B, Antonius G, et al. 2020 Comput. Phys. Commun. 248 107042Google Scholar
[38] Romero A H, Allan D C, Amadon B, et al. 2020 J. Chem. Phys. 152 124102Google Scholar
[39] Gonze X, Jollet F, Abreu Araujo F, et al. 2016 Comput. Phys. Commun. 205 106Google Scholar
[40] Gonze X, Amadon B, Anglade P M, et al. 2009 Comput. Phys. Commun. 180 2582Google Scholar
[41] Torrent M, Jollet F, Bottin F, et al. 2008 Comput. Mater. Sci. 42 337Google Scholar
[42] Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33Google Scholar
[43] Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272Google Scholar
[44] Boroński E, Nieminen R M 1986 Phys. Rev. B 34 3820Google Scholar
[45] Arponen J, Pajanne E 1979 Ann. Phys. 121 343Google Scholar
[46] Nieminen R M, Boronski E, Lantto L J 1985 Phys. Rev. B 32 1377Google Scholar
[47] Wiktor J, Jomard G, Torrent M 2015 Phys. Rev. B 92 125113Google Scholar
[48] Hom T, Kiszenik W, Post B 1975 J. Appl. Crystallogr. 8 457Google Scholar
[49] Holloway H, Hass K C, Tamor M A, et al. 1991 Phys. Rev. B 44 7123Google Scholar
[50] Zhao Y, Yan F, An Y 2022 Coatings 12 619Google Scholar
[51] Uedono A, Fujii S, Morishita N, et al. 1999 J. Phys. Condens. Matter 11 4109Google Scholar
[52] Shiryaev A A, Iakoubovskii K, Schut H, et al. 2001 Mater. Sci. Forum 363 – 365 40
[53] Dannefaer S, Mascher P, Kerr D 1992 Diamond Relat. Mater. 1 407Google Scholar
[54] Kršjak V, Sojak S, Slugeň V, et al. 2011 J. Phys. Conf. Ser. 265 012014Google Scholar
[55] Dannefaer S, Iakoubovskii K 2008 J. Phys. Condens. Matter 20 235225Google Scholar
[56] Puska M J, Lanki P, Nieminen R M 1989 J. Phys. Condens. Matter 1 6081Google Scholar
[57] Maier K, Peo M, Saile B, et al. 1979 Philos. Mag. A 40 701Google Scholar
-
图 2 金刚石空位模型及电子密度图 (a) 金刚石空位模型及切面示意图; (b) 金刚石空位切面二维电子密度图; (c) 金刚石正电子模型及切面示意图; (d) 金刚石空位切面二维电子密度图
Fig. 2. Diamond vacancy model and electron density diagrams: (a) Diamond vacancy model with cross-section; (b) 2D electron density map of the diamond vacancy cross-section; (c) diamond positron model with cross-section; (d) 2D electron density map of the diamond positron cross-section.
图 4 金刚石超胞掺杂后的二维电子密度图 (a) 金刚石超胞模型和切面示意; (b) 掺杂B; (c) 掺杂Cr; (d) 掺杂Mo; (e) 未掺杂; (f) 掺杂W; (g) 掺杂Ti; (h) 掺杂Zr
Fig. 4. 2D electron density map of diamond supercell after doping: (a) Diamond supercell model and section illustration; (b) doped with B; (c) doped with Cr; (d) doped with Mo; (e) undoped atoms; (f) doped with W; (g) doped with Ti; (h) doped with Zr.
表 1 采用不同正电子–电子交换关联函数和增强因子计算的金刚石正电子湮灭寿命值
Table 1. Diamond positron annihilation lifetime values calculated using different positron electron exchange correlation functions and enhancement factors.
赝势文件 GGA-PBE LDA-PW 文献 计算方法 Boronski &
NieminenSterne &
KaiserBoronski &
NieminenSterne &
KaiserPuska, Seitsonen,
and Nieminen— 湮灭增强因子 RPA限制和
GGA修正GGA修正 RPA限制 Sterne &
KaiserPuska, Seitsonen
and Nieminen— 完美晶体/ps 106.55 108.86 99.8 102.18 107.59 97—115[31,35,51] 单位/ps 128.85 130.7 119.87 121.79 109.87 120[53] 电子-电子自洽/ps — — 129.54 122.11 122.24 — 表 2 掺杂B, Cr, Mo, Ti, W和Zr原子后, 金刚石中正电子湮灭寿命值
Table 2. Positron annihilation lifetime values in diamond after doping with B, Cr, Mo, Ti, W, and Zr atoms.
-
[1] Stachel T, Luth R W 2015 Lithos 220 – 223 200
[2] Bulanova G P 1995 J. Geochem. Explor. 53 1Google Scholar
[3] Wei L, Kuo P K, Thomas R L, et al. 1993 Phys. Rev. Lett. 70 3764Google Scholar
[4] Chakraborty P, Xiong G, Cao L, et al. 2018 Carbon 139 85Google Scholar
[5] Ciupiński Ł, Kruszewski M J, Grzonka J, et al. 2017 Mater. Des. 120 170Google Scholar
[6] Kidalov S V, Shakhov F M 2009 Materials 2 2467Google Scholar
[7] May P W 2000 Philos. Trans. R. Soc. London, Ser. A 358 473Google Scholar
[8] Liao M 2021 Funct. Diamond 1 29Google Scholar
[9] Gomez H, Groves M N, Neupane M R 2021 Carbon Trends 3 100033Google Scholar
[10] Pan Y, He X, Ren S, et al. 2018 Vacuum 153 74Google Scholar
[11] Soltani H M, Tayebi M 2020 Int. J. Refract. Met. Hard Mater. 87 105172Google Scholar
[12] Pillari L K, Bakshi S R, Chaudhuri P, et al. 2020 Adv. Powder Technol. 31 3657Google Scholar
[13] Zhang X Y, Xu M, Cao S Z, et al. 2020 Diamond Relat. Mater. 104 107755Google Scholar
[14] Jia J, Bai S, Xiong D, et al. 2019 Ceram. Int. 45 10810Google Scholar
[15] Liu Z, Zheng S, Lu Z, et al. 2018 Carbon 127 548Google Scholar
[16] Wu M, Chang L, Zhang L, et al. 2017 Surf. Coat. Technol. 325 490Google Scholar
[17] Contreras Cuevas A, Bedolla Becerril E, Martínez M S, et al. 2018 Metal Matrix Composites (Cham: Springer International Publishing
[18] Bai G, Li N, Wang X, et al. 2018 J. Alloys Compd. 735 1648Google Scholar
[19] Bai G, Wang L, Zhang Y, et al. 2019 Mater. Charact. 152 265Google Scholar
[20] Liu X, Sun F, Wang L, et al. 2020 Appl. Surf. Sci. 515 146046Google Scholar
[21] Kang Q, He X, Ren S, et al. 2013 J. Alloys Compd. 576 380Google Scholar
[22] Che Q L, Chen X K, Ji Y Q, et al. 2015 Mater. Sci. Semicond. Process. 30 104Google Scholar
[23] Li J, Zhang H, Wang L, et al. 2016 Composites Part A 91 189Google Scholar
[24] Abyzov A M, Kidalov S V, Shakhov F M 2012 Appl. Therm. Eng. 48 72
[25] He J, Wang X, Zhang Y, et al. 2015 Composites Part B 68 22Google Scholar
[26] Wang L, Li J, Bai G, et al. 2019 J. Alloys Compd. 781 800Google Scholar
[27] Dannefaer S 2007 Phys. Status Solidi C 4 3605Google Scholar
[28] Avalos V, Dannefaer S 2003 Phys. B: Condens. Matter 340 – 342 76
[29] Siegel R W 1980 Annu. Rev. Mater. Sci. 10 393Google Scholar
[30] Tuomisto F, Makkonen I 2013 Rev. Mod. Phys. 85 1583Google Scholar
[31] Pu A, Bretagnon T, Kerr D, et al. 2000 Diamond Relat. Mater. 9 1450Google Scholar
[32] Sachdeva A, Sudarshan K, Pujari P, et al. 2004 Diamond Relat. Mater. 13 1719Google Scholar
[33] Hu X J, Ye J S, Liu H J, et al. 2008 Thin Solid Films 516 1699Google Scholar
[34] Jones R 2009 Diamond Relat. Mater. 18 820Google Scholar
[35] Fujii S, Nishibayashi Y, Shikata S, et al. 1995 J. Appl. Phys. 78 1510Google Scholar
[36] Eseev M, Kuziv I, Kostin A, et al. 2022 Materials 16 203Google Scholar
[37] Gonze X, Amadon B, Antonius G, et al. 2020 Comput. Phys. Commun. 248 107042Google Scholar
[38] Romero A H, Allan D C, Amadon B, et al. 2020 J. Chem. Phys. 152 124102Google Scholar
[39] Gonze X, Jollet F, Abreu Araujo F, et al. 2016 Comput. Phys. Commun. 205 106Google Scholar
[40] Gonze X, Amadon B, Anglade P M, et al. 2009 Comput. Phys. Commun. 180 2582Google Scholar
[41] Torrent M, Jollet F, Bottin F, et al. 2008 Comput. Mater. Sci. 42 337Google Scholar
[42] Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33Google Scholar
[43] Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272Google Scholar
[44] Boroński E, Nieminen R M 1986 Phys. Rev. B 34 3820Google Scholar
[45] Arponen J, Pajanne E 1979 Ann. Phys. 121 343Google Scholar
[46] Nieminen R M, Boronski E, Lantto L J 1985 Phys. Rev. B 32 1377Google Scholar
[47] Wiktor J, Jomard G, Torrent M 2015 Phys. Rev. B 92 125113Google Scholar
[48] Hom T, Kiszenik W, Post B 1975 J. Appl. Crystallogr. 8 457Google Scholar
[49] Holloway H, Hass K C, Tamor M A, et al. 1991 Phys. Rev. B 44 7123Google Scholar
[50] Zhao Y, Yan F, An Y 2022 Coatings 12 619Google Scholar
[51] Uedono A, Fujii S, Morishita N, et al. 1999 J. Phys. Condens. Matter 11 4109Google Scholar
[52] Shiryaev A A, Iakoubovskii K, Schut H, et al. 2001 Mater. Sci. Forum 363 – 365 40
[53] Dannefaer S, Mascher P, Kerr D 1992 Diamond Relat. Mater. 1 407Google Scholar
[54] Kršjak V, Sojak S, Slugeň V, et al. 2011 J. Phys. Conf. Ser. 265 012014Google Scholar
[55] Dannefaer S, Iakoubovskii K 2008 J. Phys. Condens. Matter 20 235225Google Scholar
[56] Puska M J, Lanki P, Nieminen R M 1989 J. Phys. Condens. Matter 1 6081Google Scholar
[57] Maier K, Peo M, Saile B, et al. 1979 Philos. Mag. A 40 701Google Scholar
计量
- 文章访问数: 2773
- PDF下载量: 68
- 被引次数: 0