Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Formation of step bunching on 4H-SiC (0001) surfaces based on kinetic Monte Carlo method

Li Yuan Shi Ai-Hong Chen Guo-Yu Gu Bing-Dong

Citation:

Formation of step bunching on 4H-SiC (0001) surfaces based on kinetic Monte Carlo method

Li Yuan, Shi Ai-Hong, Chen Guo-Yu, Gu Bing-Dong
PDF
HTML
Get Citation
  • Wide-band gap SiC is a promising semiconductor material for microelectronic applications due to its superior electronic properties, high thermal conductivity, chemical and radiation stability, and extremely high break-down voltage. Over the past several years, tremendous advances have been made in SiC crystal growth technology. Nevertheless, SiC will not reach its anticipated potential until a variety of problems are solved, one of the problem is step bunching during step flow growth of SiC, because it could lead to uneven distribution of impurity and less smooth surfaces. In this paper, step bunching morphologies on vicinal 4H-SiC (0001) surfaces with the miscut toward $\left[ {1\bar 100} \right]$ or $\left[ {11\bar 20} \right]$ directions are studied with a three-dimensional kinetic Monte Carlo model, and then compared with the analytic model based on the theory of Burton-Cabera-Frank. In the kinetic Monte Carlo model, based on the crystal lattice of 4H-SiC, a lattice mesh is established to fix the positions of atoms and bond partners. The events considered in the model are adsorption and diffusion of adatoms on the terraces, attachment, detachment and interlayer transport of adatoms at the step edges. The effects of Ehrlich-Schwoebel barriers at downward step edges and inverse Schwoebel barrier at upwards step edges are also considered. In addition, to obtain more elaborate information about the behavior of atoms in the crystal surface, silicon and carbon atoms are treated as the minimal diffusing species. Finally, the periodic boundary conditions are applied to the lateral direction while the " helicoidal boundary conditions” are used in the direction of crystal growth. The simulation results show that four bilayer-height steps are formed on the vicinal 4H-SiC (0001) surfaces with the miscut toward $\left[ {1\bar 100} \right]$ direction, while along the $\left[ {11\bar 20} \right]$ direction, only bunches with two-bilayer-height are formed. Moreover, zigzag shaped edges are observed for 4H-SiC (0001) vicinal surfaces with the miscut toward $\left[ {11\bar 20} \right]$ direction. The formation of these step bunching morphologies on vicinal surfaces with different miscut directions are related to the extra energy and step barrier. The different extra energy for each bilayer plane results in step bunches with two-bilayer-height on the vicinal 4H-SiC (0001) surface. And the step barriers finally lead to the formation of step bunches with four-bilayer-height. Finally, the formation mechanism of the stepped morphology is also analyzed by a one-dimensional Burton-Cabera-Frank analytic model. In the model, the parameters are corresponding to those used in the kinetic Monte Carlo model, and then solved numerically. The evolution characteristic of step bunching calculated by the Burton-Cabera-Frank model is consistent with the results obtained by the kinetic Monte Carlo simulation.
      Corresponding author: Li Yuan, li-yuan-email@qq.com
    • Funds: Project supported by the Natural Science Foundation of Qinghai Province, China (Grant No. 2018-ZJ-946Q) and Natural Science Foundation of Qinghai Nationalities University, China (Grant No. 2017XJG05).
    [1]

    Kimoto T 2016 Prog. Cryst. Growth Charact. Mater. 62 329Google Scholar

    [2]

    Tsunenobu K 2015 Jpn. J. Appl. Phys. 54 040103Google Scholar

    [3]

    唐超, 吉璐, 孟利军, 孙立忠, 张凯旺, 钟建新 2009 58 7815Google Scholar

    Tang C, Ji L, Meng L J, Sun L Z, Zhang K W, Zhong J X, 2009 Acta Phys. Sin. 58 7815Google Scholar

    [4]

    冯倩, 郝跃, 张晓菊, 刘玉龙 2004 53 626Google Scholar

    Feng Q, Hao Y, Zhang X J, Liu Y L 2004 Acta Phys. Sin. 53 626Google Scholar

    [5]

    杨慧慧, 高峰, 戴明金, 胡平安 2017 66 216804Google Scholar

    Yang H H, Gao F, Dai M J, Hu P A 2017 Acta Phys. Sin. 66 216804Google Scholar

    [6]

    La V F, Severino A, Anzalone R, Bongiorno C, Litrico G, Mauceri M, Schoeler M, Schuh P, Wellmann P 2018 Mater. Sci. Semicond. Process. 78 57Google Scholar

    [7]

    Müller S G, Sanchez E K, Hansen D M, Drachev R D, Chung G, Thomas B, Zhang J, Loboda M J, Dudley M, Wang H, Wu F, Byrappa S, Raghothamachar B, Choi G 2012 J. Cryst. Growth 352 39Google Scholar

    [8]

    Tomoki Y, Ohtomo K, Sato S, Ohtani N, Katsuno M, Fujimoto T, Sato S, Tsuge H, Yano T 2015 J. Cryst. Growth 431 24Google Scholar

    [9]

    Schwoebel R L 1969 J. Appl. Phys. 40 614Google Scholar

    [10]

    Kimoto T, Itoh A, Matsunami H, Okano T 1997 J. Appl. Phys. 81 3494Google Scholar

    [11]

    Kimoto T, Itoh A, Matsunami H 1995 Appl. Phys. Lett. 66 3645Google Scholar

    [12]

    Ohtani N, Katsuno M, Aigo T, Fujimoto T, Tsuge H, Yashiro H, Kanaya M 2000 J. Cryst. Growth 210 613Google Scholar

    [13]

    Heuell P, Kulakov M A, Bullemer B 1995 Surf. Sci. 331-333 965

    [14]

    Borovikov V, Zangwill A 2009 Phys. Rev. B 79 245413Google Scholar

    [15]

    Krzyżewski F 2014 J. Cryst. Growth 401 511Google Scholar

    [16]

    Xie M H, Leung S Y, Tong S Y 2002 Surf. Sci. 515 L459Google Scholar

    [17]

    Krzyżewski F, Załuska–Kotur M A 2014 J. Appl. Phys. 115 213517Google Scholar

    [18]

    Li Y, Chen X J, Su J 2016 Appl. Surf. Sci. 371 242Google Scholar

    [19]

    Battaile C C 2008 Comput. Methods Appl. Mech. Engrg. 197 3386Google Scholar

    [20]

    Chien F R, Nutt S R, Yoo W S, Kimoto T, Matsunami H 1994 J. Mater. Res. 9 940Google Scholar

    [21]

    Heine V, Cheng C, Needs R J 1991 J. Am. Ceram. Soc. 74 2630Google Scholar

    [22]

    Li Y, Chen X, Su J 2017 J. Cryst. Growth 468 28Google Scholar

    [23]

    Camarda M, La Magna A, La Via F 2007 J. Comput. Phys. 227 1075Google Scholar

    [24]

    Ohtani N, Katsuno M, Takahashi J, Yashiro H, Kanaya M 1999 Phys. Rev. B 59 4592Google Scholar

    [25]

    Sato M 2018 Phys. Rev. E 97 062801Google Scholar

    [26]

    Ranguelov B, Müller P, Metois J J, Stoyanov S 2017 J. Cryst. Growth 457 184Google Scholar

    [27]

    Markov I V 2003 Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy (London: World Scientific)

    [28]

    Vasiliauskas R, Marinova M, Hens P, Wellmann P, Syväjärvi, Yakimova R 2012 Cryst. Growth Des. 12 197

    [29]

    Mochizuki K 2008 Appl. Phys. Lett. 93 222108Google Scholar

  • 图 1  4H-SiC晶体结构示意图

    Figure 1.  Schematic crystal structure of 4H-SiC.

    图 2  (a)邻位关系计算模型; (b)中间层俯视图

    Figure 2.  (a) The calculation model of neighbors; (b) top view of medial layer.

    图 3  4H-SiC (0001)面偏向$\left[ {1\bar 100} \right]$的台阶形貌演化 (a)初始台阶; (b) AB (蓝)与 BC (浅蓝)聚并台阶的形成; (c) 四层台阶聚并

    Figure 3.  The evolution of stepped morphology on 4H-SiC (0001) surface with miscut toward $\left[ {1\bar 100} \right]$ direction: (a) Initial stage; (b) formation of two-bilayer-height AB (blue) steps and CB (light blue); (c) bunching of four bilayers.

    图 4  4H-SiC (0001)面偏向$\left[ {11\bar 20} \right]$的台阶形貌演化 (a)初始台阶; (b) AB (蓝)与 BC (浅蓝)聚并台阶的形成; (c) 两层台阶形成的聚并扭折台阶

    Figure 4.  The evolution of stepped morphology on 4H-SiC (0001) surface with miscut toward $\left[ {11\bar 20} \right]$ direction: (a) Initial stage; (b) formation of two-bilayer-height CB (light blue) and AB (blue) steps; (c) formation of two-bilayer-height steps with zigzag shapes.

    图 5  不同类型台阶键的配置方式 (a)SN型台阶; (b)SD型台阶; (c)SM型台阶

    Figure 5.  The difference in bond configurations are shown schematically: (a) Type of SN step edge; (b) type of SD step edge; (c) type of SM step edge.

    图 6  台阶流动生长中SiC晶体邻晶面示意图 (a)台阶表面事件与能量势垒; (b)台阶侧面

    Figure 6.  Schematic top and side view of a vicinal surface during step-flow growth: (a) The events occurring on the surface and energy barriers; (b) side view of a vicinal surface.

    图 7  4H-SiC (0001)面偏向$\left[ {1\bar 100} \right]$方向台阶轨迹

    Figure 7.  Step trajectories of the vicinal surface with miscut angles towards $\left[ {1\bar 100} \right]$ direction.

    图 8  4H-SiC (0001)面偏向$\left[ {11\bar 20} \right]$方向台阶轨迹

    Figure 8.  Step trajectories of the vicinal surface with miscut angles towards $\left[ {11\bar 20} \right]$ direction.

    Baidu
  • [1]

    Kimoto T 2016 Prog. Cryst. Growth Charact. Mater. 62 329Google Scholar

    [2]

    Tsunenobu K 2015 Jpn. J. Appl. Phys. 54 040103Google Scholar

    [3]

    唐超, 吉璐, 孟利军, 孙立忠, 张凯旺, 钟建新 2009 58 7815Google Scholar

    Tang C, Ji L, Meng L J, Sun L Z, Zhang K W, Zhong J X, 2009 Acta Phys. Sin. 58 7815Google Scholar

    [4]

    冯倩, 郝跃, 张晓菊, 刘玉龙 2004 53 626Google Scholar

    Feng Q, Hao Y, Zhang X J, Liu Y L 2004 Acta Phys. Sin. 53 626Google Scholar

    [5]

    杨慧慧, 高峰, 戴明金, 胡平安 2017 66 216804Google Scholar

    Yang H H, Gao F, Dai M J, Hu P A 2017 Acta Phys. Sin. 66 216804Google Scholar

    [6]

    La V F, Severino A, Anzalone R, Bongiorno C, Litrico G, Mauceri M, Schoeler M, Schuh P, Wellmann P 2018 Mater. Sci. Semicond. Process. 78 57Google Scholar

    [7]

    Müller S G, Sanchez E K, Hansen D M, Drachev R D, Chung G, Thomas B, Zhang J, Loboda M J, Dudley M, Wang H, Wu F, Byrappa S, Raghothamachar B, Choi G 2012 J. Cryst. Growth 352 39Google Scholar

    [8]

    Tomoki Y, Ohtomo K, Sato S, Ohtani N, Katsuno M, Fujimoto T, Sato S, Tsuge H, Yano T 2015 J. Cryst. Growth 431 24Google Scholar

    [9]

    Schwoebel R L 1969 J. Appl. Phys. 40 614Google Scholar

    [10]

    Kimoto T, Itoh A, Matsunami H, Okano T 1997 J. Appl. Phys. 81 3494Google Scholar

    [11]

    Kimoto T, Itoh A, Matsunami H 1995 Appl. Phys. Lett. 66 3645Google Scholar

    [12]

    Ohtani N, Katsuno M, Aigo T, Fujimoto T, Tsuge H, Yashiro H, Kanaya M 2000 J. Cryst. Growth 210 613Google Scholar

    [13]

    Heuell P, Kulakov M A, Bullemer B 1995 Surf. Sci. 331-333 965

    [14]

    Borovikov V, Zangwill A 2009 Phys. Rev. B 79 245413Google Scholar

    [15]

    Krzyżewski F 2014 J. Cryst. Growth 401 511Google Scholar

    [16]

    Xie M H, Leung S Y, Tong S Y 2002 Surf. Sci. 515 L459Google Scholar

    [17]

    Krzyżewski F, Załuska–Kotur M A 2014 J. Appl. Phys. 115 213517Google Scholar

    [18]

    Li Y, Chen X J, Su J 2016 Appl. Surf. Sci. 371 242Google Scholar

    [19]

    Battaile C C 2008 Comput. Methods Appl. Mech. Engrg. 197 3386Google Scholar

    [20]

    Chien F R, Nutt S R, Yoo W S, Kimoto T, Matsunami H 1994 J. Mater. Res. 9 940Google Scholar

    [21]

    Heine V, Cheng C, Needs R J 1991 J. Am. Ceram. Soc. 74 2630Google Scholar

    [22]

    Li Y, Chen X, Su J 2017 J. Cryst. Growth 468 28Google Scholar

    [23]

    Camarda M, La Magna A, La Via F 2007 J. Comput. Phys. 227 1075Google Scholar

    [24]

    Ohtani N, Katsuno M, Takahashi J, Yashiro H, Kanaya M 1999 Phys. Rev. B 59 4592Google Scholar

    [25]

    Sato M 2018 Phys. Rev. E 97 062801Google Scholar

    [26]

    Ranguelov B, Müller P, Metois J J, Stoyanov S 2017 J. Cryst. Growth 457 184Google Scholar

    [27]

    Markov I V 2003 Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy (London: World Scientific)

    [28]

    Vasiliauskas R, Marinova M, Hens P, Wellmann P, Syväjärvi, Yakimova R 2012 Cryst. Growth Des. 12 197

    [29]

    Mochizuki K 2008 Appl. Phys. Lett. 93 222108Google Scholar

  • [1] Sun Gui-Hua, Zhang Qing-Li, Luo Jian-Qiao, Wang Xiao-Fei, Gu Chang-Jiang. Growth and spectral properties of Pr, Yb, Ho:GdScO3 crystal. Acta Physica Sinica, 2024, 73(5): 059801. doi: 10.7498/aps.73.20231362
    [2] Sun gui hua, Zhang qingli, Luo jianqiao, Wang xiaofei, Gu changjiang. Growth and spectral properties of Pr,Yb,Ho:GdScO3 crystals. Acta Physica Sinica, 2023, 0(0): . doi: 10.7498/aps.72.20231362
    [3] Wang Fu, Zhou Yi, Gao Shi-Xin, Duan Zhen-Gang, Sun Zhi-Peng, Wang Jun, Zou Yu, Fu Bao-Qin. Molecular dynamics study of effects of point defects on thermal conductivity in cubic silicon carbide. Acta Physica Sinica, 2022, 71(3): 036501. doi: 10.7498/aps.71.20211434
    [4] Effects of point defects on thermal conductivity in cubic silicon carbide: A molecular dynamics study. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211434
    [5] Zhang Hong, Guo Hong-Xia, Pan Xiao-Yu, Lei Zhi-Feng, Zhang Feng-Qi, Gu Zhao-Qiao, Liu Yi-Tian, Ju An-An, Ouyang Xiao-Ping. Transport process and energy loss of heavy ions in silicon carbide. Acta Physica Sinica, 2021, 70(16): 162401. doi: 10.7498/aps.70.20210503
    [6] Lu Yuan-Yuan, Lu Gui-Hua, Zhou Heng-Wei, Huang Yi-Neng. Preparation and properties of spodumene/silicon carbide composite ceramic materials. Acta Physica Sinica, 2020, 69(11): 117701. doi: 10.7498/aps.69.20200232
    [7] Li Yuan-Yuan, Yu Yin, Meng Chuan-Min, Zhang Lu, Wang Tao, Li Yong-Qiang, He Hong-Liang, He Duan-Wei. Dynamic impact strength of diamond-SiC superhard composite. Acta Physica Sinica, 2019, 68(15): 158101. doi: 10.7498/aps.68.20190350
    [8] Shen Shuai-Shuai, He Chao-Hui, Li Yong-Hong. Non-ionization energy loss of proton in different regions in SiC. Acta Physica Sinica, 2018, 67(18): 182401. doi: 10.7498/aps.67.20181095
    [9] Sun Xian-Ming, Xiao Sai, Wang Hai-Hua, Wan Long, Shen Jin. Transportation of Gaussian light beam in two-layer clouds by Monte Carlo simulation. Acta Physica Sinica, 2015, 64(18): 184204. doi: 10.7498/aps.64.184204
    [10] Li Shu, Lan Ke, Lai Dong-Xian, Liu Jie. Monte Carlo simulation of the radiation transport of spherical holhraum. Acta Physica Sinica, 2015, 64(14): 145203. doi: 10.7498/aps.64.145203
    [11] Huang Wei-Chao, Liu Ding, Jiao Shang-Bin, Zhang Ni. Thermo-fluid coupling of unsteady flow in Czochralski crystal growth. Acta Physica Sinica, 2015, 64(20): 208102. doi: 10.7498/aps.64.208102
    [12] Dai Chun-Juan, Liu Xi-Qin, Liu Zi-Li, Liu Bo-Lu. The Monte Carlo simulation of neutron shielding performance of boron carbide reinforced with aluminum composites. Acta Physica Sinica, 2013, 62(15): 152801. doi: 10.7498/aps.62.152801
    [13] Song Kun, Chai Chang-Chun, Yang Yin-Tang, Jia Hu-Jun, Chen Bin, Ma Zhen-Yang. Effects of the improved hetero-material-gate approach on sub-micron silicon carbide metal-semiconductor field-effect transistor. Acta Physica Sinica, 2012, 61(17): 177201. doi: 10.7498/aps.61.177201
    [14] Fang Chao, Liu Ma-Lin. The study of the Raman spectra of SiC layers in TRISO particles. Acta Physica Sinica, 2012, 61(9): 097802. doi: 10.7498/aps.61.097802
    [15] Zhou Nai-Gen, Hong Tao, Zhou Lang. A comparative study between MEAM and Tersoff potentials on the characteristics of melting and solidification of carborundum. Acta Physica Sinica, 2012, 61(2): 028101. doi: 10.7498/aps.61.028101
    [16] Xing Hui, Chen Chang-Le, Jin Ke-Xin, Tan Xing-Yi, Fan Fei. Simulation of crystal growth using phase-field crystal method. Acta Physica Sinica, 2010, 59(11): 8218-8225. doi: 10.7498/aps.59.8218
    [17] Fu Fang-Zheng, Li Ming. Calculating the threshold of random laser by using Monte Carlo method. Acta Physica Sinica, 2009, 58(9): 6258-6263. doi: 10.7498/aps.58.6258
    [18] Lin Tao, Chen Zhi-Ming, Li Jia, Li Lian-Bi, Li Qing-Min, Pu Hong-Bin. Study of the growth characteristics of SiCGe layers grown on 6H-SiC substrates. Acta Physica Sinica, 2008, 57(9): 6007-6012. doi: 10.7498/aps.57.6007
    [19] Tang Xiao-Yan, Zhang Yi-Men, Zhang He-Ming, Zhang Yu-Ming, Dai Xian-Ying, Hu Hui-Yong. 3UCVD deposition SiO2 on SiC wafer and its C-V measurement. Acta Physica Sinica, 2004, 53(9): 3225-3228. doi: 10.7498/aps.53.3225
    [20] Wang Jian-Ping, Hao Yue, Peng Jun, Zhu Zuo-Yun, Zhang Yong-Hua. . Acta Physica Sinica, 2002, 51(8): 1793-1797. doi: 10.7498/aps.51.1793
Metrics
  • Abstract views:  15589
  • PDF Downloads:  391
  • Cited By: 0
Publishing process
  • Received Date:  21 November 2018
  • Accepted Date:  23 January 2019
  • Available Online:  23 March 2019
  • Published Online:  05 April 2019

/

返回文章
返回
Baidu
map