Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Transport process and energy loss of heavy ions in silicon carbide

Zhang Hong Guo Hong-Xia Pan Xiao-Yu Lei Zhi-Feng Zhang Feng-Qi Gu Zhao-Qiao Liu Yi-Tian Ju An-An Ouyang Xiao-Ping

Citation:

Transport process and energy loss of heavy ions in silicon carbide

Zhang Hong, Guo Hong-Xia, Pan Xiao-Yu, Lei Zhi-Feng, Zhang Feng-Qi, Gu Zhao-Qiao, Liu Yi-Tian, Ju An-An, Ouyang Xiao-Ping
PDF
HTML
Get Citation
  • Using the Monte Carlo method, the energy losses in silicon carbide of heavy ions with different linear energy transfers (LETs) are simulated and calculated. The simulation results show that the energy loss per unit depth of heavy ions in silicon carbide is affected by both the ion energy and the incident depth. Primary heavy ions and secondary electrons mainly cause energy loss, and the non-ionization energy loss only accounts for about 1% of the total energy loss. With the increase of LET, the initial angle and energy distribution of the secondary electrons become more and more concentrated. The peak position of the generated charge deposition is in the center of the heavy-ion track, and the distribution is linearly decreasing in Gaussian form in the direction perpendicular to the incident depth. In the californium source experiment of SiC MOSFET, when the drain voltage is 480 V, the device has a single event burnout, and the breakdown voltage of SiC MOSFET is less than 1 V after burnout has occurred. With the experimental results, we carry out the TCAD simulation of SiC MOSFET and obtain the electric field distribution inside the device under different drain voltages. The electric field parameters are used in the Monte Carlo simulation of SiC MOSFET with considering the metal layer. It is found in the Monte Carlo simulation that the greater the electric field of the epitaxial layer, the longer the path of heavy ions moving on the epitaxial layer is and the more the deposited energy, and that the secondary electrons are more likely to move in the direction of the electric field as the electric field increases, resulting in excessive energy deposition in local areas.
      Corresponding author: Guo Hong-Xia, guohongxia@nint.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11875229)
    [1]

    Elasser A, Chow T P 2002 Proc. IEEE 90 969Google Scholar

    [2]

    Johnson C M, Wright N G, Uren M J, Hilton K P, Rahimo M, Hinchley D A, Knights A P, Morrison D J, Horsfall A B, Ortolland S, O’Neill A G 2001 IEE Proc.: Circuits Devices Syst. 148 101Google Scholar

    [3]

    Cooper, Jr J A 1997 Phys. Status Solidi A 162 305Google Scholar

    [4]

    周拥华, 张义门, 张玉明, 孟祥志 2004 11 3710Google Scholar

    Zhou Y H, Zhang Y M, Zhang Y M, Meng X Z 2004 Acta Phys. Sin. 11 3710Google Scholar

    [5]

    秦希峰, 梁毅, 王凤翔, 李双, 付刚, 季艳菊 2011 60 066101Google Scholar

    Qin X F, Liang Y, Wang F X, Li S, Fu G, Ji Y J 2011 Acta Phys. Sin. 60 066101Google Scholar

    [6]

    Zhang X 2013 Ph. D. Dissertation (Nashville: Vanderbilt University)

    [7]

    白玉新, 刘俊琴, 李雪, 曹英健, 张建国, 仲悦 2011 航天标准化 03 10Google Scholar

    Bai Y X, Liu J Q, Li X, Cao Y J, Zhang J G, Zhong Y 2011 Aerospace Standardization 03 10Google Scholar

    [8]

    张林, 张义门, 张玉明, 韩超, 马永吉 2009 58 2737Google Scholar

    Zhou L, Zhang Y M, Zhang Y M, Han C, Man Y J 2009 Acta Phys. Sin. 58 2737Google Scholar

    [9]

    Messenger S R, Burke E A, Summers G P, Xapsos M A, Walters R J, Jackson E M, Weaver B D 1999 IEEE Trans. Nucl. Sci. 46 1595Google Scholar

    [10]

    Messenger S R, Burke E A, Xapsos M A, Summers G P, Walters R J, Jun I 2003 IEEE Trans. Nucl. Sci. 50 1919Google Scholar

    [11]

    Mizuta E, Kuboyama S, Abe H, Iwata Y, Tamura T 2014 IEEE Trans. Nucl. Sci. 61 1924Google Scholar

    [12]

    Witulski A F, Arslanbekov R, Raman A, Schrimpf R D, Sternberg A L, Galloway K F, Javanainen A, Grider D, Lichtenwalner D J, Hull B 2017 IEEE Trans. Nucl. Sci. 65 256Google Scholar

    [13]

    Javanainen A, Galloway K F, Nicklaw C, Bosser A L, Cavrois V F, Lauenstein J M, Pintacuda F, Reed R A, Schrimpf R D, Weller R A, Virtanen A 2016 IEEE Trans. Nucl. Sci. 64 415Google Scholar

    [14]

    Javanainen A, Turowski M, Galloway K F, Nicklaw C, Cavrois V F, Bosser A, Lauenstein J M, Muschitiello M, Pintacuda F, Reed R A, Schrimpf R D, Weller R A, Virtanen A 2017 IEEE Trans. Nucl. Sci. 64 2031Google Scholar

    [15]

    于庆奎, 曹爽, 张洪伟, 梅博, 孙毅, 王贺, 李晓亮, 吕贺, 李鹏伟, 唐民 2019 原子能科学技术 53 2114Google Scholar

    Yu Q K, Cao S, Zhang H W, Mei B, Sun Y, Wang H, Li X L, Lv H, Li P W, Tang M 2019 Atom. Energ. Sci. Technol. 53 2114Google Scholar

    [16]

    郭达禧, 贺朝会, 臧航, 席建琦, 马梨, 杨涛, 张鹏 2013 原子能科学技术 47 1222Google Scholar

    Guo D X, He C H, Zang H, Xi J Q, Ma L, Yang T, Zhang P 2013 Atom. Energ. Sci. Technol. 47 1222Google Scholar

    [17]

    陈世彬, 张义门, 陈雨生, 黄流兴, 张玉明 2001 高能物理与核物理 25 365Google Scholar

    Chen S B, Zhang Y M, Chen Y S, Huang L X, Zhang Y M 2001 High Energ. Phys. Nucl. 25 365Google Scholar

    [18]

    申帅帅, 贺朝会, 李永宏 2018 67 182401Google Scholar

    Shen S S, He C H, Li Y H 2018 Acta Phys. Sin. 67 182401Google Scholar

    [19]

    Kuboyama S, Kamezawa C, Ikeda N, Hirao T, Ohyama H 2006 IEEE Trans. Nucl. Sci. 53 3343Google Scholar

    [20]

    Kuboyama S, Kamezawa C, Satoh Y, Hirao T, Ohyama H 2007 IEEE Trans. Nucl. Sci. 54 2379Google Scholar

    [21]

    Casey M C, Lauenstein J M, Topper A D, Wilcox E P, Kim H, Phan A M, LaBel K A 2012 The 3rd Annual NEPP Electronic Technology Workshop, Greenbelt, Maryland, USA, June 11−13, 2012 p561

    [22]

    Lauenstein J M, Casey M C, LaBel K A, Topper A D, Wilcox E P, Kim H, Phan A M 2014 The 5th Annual NEPP Electronic Technology Workshop, Greenbelt, Maryland, USA, June 17−19, 2014 p561

    [23]

    Abbate C, Busatto G, Cova P, Delmonte N, Giuliani F, Iannuzzo F, Sanseverino A, Velardi F 2014 Microelectron. Reliab. 54 2200Google Scholar

    [24]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Methods Phys. Res., Sect. B 268 1818Google Scholar

    [25]

    Evseev I G, Schelin H R, Paschuk S A, Milhoretto E, Setti J A P, Yevseyeva O, Assis J T, Hormaza J M, Dıáz K S, Lopes R T 2010 Appl. Radiat. Isot. 68 948Google Scholar

    [26]

    Guide for physics Lists, Collaboration G https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsListGuide/html/index.html/ [2021-4-15]

    [27]

    Physics reference manual, Collaboration G https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsReferenceManual/html/index.html/ [2021-4-15]

    [28]

    Berger M J, Inokuti M, Andersen H H, Bichsel H, Powers D, Seltzer S M, Thwaites D, Watt D E 1993 J. Int. Commission Radiat. Units Meas. 25 49

    [29]

    侯东明, 刘杰, 孙友梅, 姚会军, 段敬来, 尹经敏, 莫丹, 张苓, 陈艳峰 2008 原子能科学技术 07 622Google Scholar

    Hou D M, Liu J, Sun Y M, Yao H J, Duan J L, Yin J M, Mo D, Zhang L, Chen Y F 2008 Atom. Energ. Sci. Technol. 07 622Google Scholar

    [30]

    Hu P P, Liu J, Zhang S X, Maaz K, Zeng J, Zhai P F, Xu L J, Cao Y R, Duan J L, Li Z Z, Sun M Y, Ma X H 2018 Nucl. Instrum. Methods Phys. Res., Sect. B 430 59Google Scholar

    [31]

    Ball D R, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Sierawski B D, Witulski A F, Reed R A, Schrimpf R D, Hutson J M, Javanainen A, Lauenstein J M 2019 IEEE Trans. Nucl. Sci. 67 22Google Scholar

  • 图 1  不同LET的重离子入射碳化硅的径迹分布 (a) 34.08 MeV·cm2/mg; (b) 44.73 MeV·cm2/mg; (c) 69.72 MeV·cm2/mg

    Figure 1.  Track distribution of heavy ions with different LET incident on silicon carbide: (a) 34.08 MeV·cm2/mg; (b) 44.73 MeV·cm2/mg; (c) 69.72 MeV·cm2/mg

    图 2  不同LET的重离子产生的能量损失随入射深度的变化

    Figure 2.  The energy loss of heavy ions with different LET changes with the depth of incidence.

    图 3  不同粒子造成的能量沉积随LET的变化

    Figure 3.  Variation of energy deposition caused by different particles with LET.

    图 4  不同LET下总能量损失的空间分布 (a) 34.08 MeV·cm2/mg; (b) 44.73 MeV·cm2/mg; (c) 69.72 MeV·cm2/mg

    Figure 4.  Spatial distribution of total energy loss under different LET: (a) 34.08 MeV·cm2/mg; (b) 44.73 MeV·cm2/mg; (c) 69.72 MeV·cm2/mg.

    图 5  不同LET下次级电子径迹的空间分布: (a) 34.08 MeV·cm2/mg; (b) 44.73 MeV·cm2/mg; (c) 69.72 MeV·cm2/mg

    Figure 5.  Spatial distribution of electron tracks under different LET: (a) 34.08 MeV·cm2/mg; (b) 44.73 MeV·cm2/mg; (c) 69.72 MeV·cm2/mg

    图 6  不同LET下次级电子的初始能量及角度分布: (a) 34.08 MeV·cm2/mg; (b) 44.73 MeV·cm2/mg; (c) 69.72 MeV·cm2/mg

    Figure 6.  The initial kinetic energy and angle distribution of secondary electron under different LET: (a) 34.08 MeV·cm2/mg; (b) 44.73 MeV·cm2/mg; (c) 69.72 MeV·cm2/mg

    图 7  总能量损失在碳化硅中的时间分布随LET的变化

    Figure 7.  Time distribution of total energy loss in SiC as a function of LET.

    图 8  非电离能量损失在碳化硅中的时间分布随LET的变化

    Figure 8.  The time distribution of non-ionizing energy loss in SiC varies with LET.

    图 9  不同LET下碳化硅中的非电离能量损失随深度的变化

    Figure 9.  The non-ionizing energy loss in SiC varies with depth under different LET.

    图 10  不同LET下电荷沉积在垂直于重离子径迹方向的分布

    Figure 10.  Distribution of charge deposition perpendicular to the direction of heavy ion tracks under different LET.

    图 11  单粒子效应试验电路图

    Figure 11.  Single event effect test circuit diagram.

    图 12  碳化硅MOSFET单粒子烧毁特征 (a)烧毁时瞬态漏电流剧增; (b)击穿特性丧失

    Figure 12.  SEB characteristics of silicon carbide MOSFET: (a) Transient leakage current increases sharply when burned out; (b) loss of breakdown characteristics.

    图 13  不同漏极偏压下碳化硅MOSFET内部的电场分布 (a)二维分布; (b)一维分布

    Figure 13.  The electric field distribution inside the silicon carbide MOSFET under different drain bias voltages: (a) Two-dimensional distribution; (b) one-dimensional distribution.

    图 14  碳化硅MOSFET内部结构示意图 (a)切片分析结果; (b)Geant4仿真模型

    Figure 14.  Schematic diagram of the internal structure of silicon carbide MOSFET: (a) Slice analysis results; (b) Geant4 simulation model.

    图 15  不同漏极偏置电压下碳化硅MOSFET外延层的能量沉积分布 (a)VDrain = 0 V; (b)VDrain = 480 V; (c)VDrain = 1000 V

    Figure 15.  Energy deposition distribution of epitaxial layer of silicon carbide MOSFET under different drain bias voltage: (a) VDrain = 0 V; (b) VDrain = 480 V; (c) VDrain = 1000 V.

    表 1  选取的重离子种类、能量及其在材料中的射程

    Table 1.  Selected heavy ion, energy and range of heavy ions in silicon carbide.

    重离子能量/MeVSiC中射程/μm@SRIMSiC中射程/μm@Geant4SiC中LET /(MeV·cm2·mg–1)Si中LET /(MeV·cm2·mg–1)
    铜 (Cu+)21222.0121.534.0832.2
    溴 (Br+)21819.9718.544.7342
    碘 (I+)27019.2116.569.7265
    DownLoad: CSV
    Baidu
  • [1]

    Elasser A, Chow T P 2002 Proc. IEEE 90 969Google Scholar

    [2]

    Johnson C M, Wright N G, Uren M J, Hilton K P, Rahimo M, Hinchley D A, Knights A P, Morrison D J, Horsfall A B, Ortolland S, O’Neill A G 2001 IEE Proc.: Circuits Devices Syst. 148 101Google Scholar

    [3]

    Cooper, Jr J A 1997 Phys. Status Solidi A 162 305Google Scholar

    [4]

    周拥华, 张义门, 张玉明, 孟祥志 2004 11 3710Google Scholar

    Zhou Y H, Zhang Y M, Zhang Y M, Meng X Z 2004 Acta Phys. Sin. 11 3710Google Scholar

    [5]

    秦希峰, 梁毅, 王凤翔, 李双, 付刚, 季艳菊 2011 60 066101Google Scholar

    Qin X F, Liang Y, Wang F X, Li S, Fu G, Ji Y J 2011 Acta Phys. Sin. 60 066101Google Scholar

    [6]

    Zhang X 2013 Ph. D. Dissertation (Nashville: Vanderbilt University)

    [7]

    白玉新, 刘俊琴, 李雪, 曹英健, 张建国, 仲悦 2011 航天标准化 03 10Google Scholar

    Bai Y X, Liu J Q, Li X, Cao Y J, Zhang J G, Zhong Y 2011 Aerospace Standardization 03 10Google Scholar

    [8]

    张林, 张义门, 张玉明, 韩超, 马永吉 2009 58 2737Google Scholar

    Zhou L, Zhang Y M, Zhang Y M, Han C, Man Y J 2009 Acta Phys. Sin. 58 2737Google Scholar

    [9]

    Messenger S R, Burke E A, Summers G P, Xapsos M A, Walters R J, Jackson E M, Weaver B D 1999 IEEE Trans. Nucl. Sci. 46 1595Google Scholar

    [10]

    Messenger S R, Burke E A, Xapsos M A, Summers G P, Walters R J, Jun I 2003 IEEE Trans. Nucl. Sci. 50 1919Google Scholar

    [11]

    Mizuta E, Kuboyama S, Abe H, Iwata Y, Tamura T 2014 IEEE Trans. Nucl. Sci. 61 1924Google Scholar

    [12]

    Witulski A F, Arslanbekov R, Raman A, Schrimpf R D, Sternberg A L, Galloway K F, Javanainen A, Grider D, Lichtenwalner D J, Hull B 2017 IEEE Trans. Nucl. Sci. 65 256Google Scholar

    [13]

    Javanainen A, Galloway K F, Nicklaw C, Bosser A L, Cavrois V F, Lauenstein J M, Pintacuda F, Reed R A, Schrimpf R D, Weller R A, Virtanen A 2016 IEEE Trans. Nucl. Sci. 64 415Google Scholar

    [14]

    Javanainen A, Turowski M, Galloway K F, Nicklaw C, Cavrois V F, Bosser A, Lauenstein J M, Muschitiello M, Pintacuda F, Reed R A, Schrimpf R D, Weller R A, Virtanen A 2017 IEEE Trans. Nucl. Sci. 64 2031Google Scholar

    [15]

    于庆奎, 曹爽, 张洪伟, 梅博, 孙毅, 王贺, 李晓亮, 吕贺, 李鹏伟, 唐民 2019 原子能科学技术 53 2114Google Scholar

    Yu Q K, Cao S, Zhang H W, Mei B, Sun Y, Wang H, Li X L, Lv H, Li P W, Tang M 2019 Atom. Energ. Sci. Technol. 53 2114Google Scholar

    [16]

    郭达禧, 贺朝会, 臧航, 席建琦, 马梨, 杨涛, 张鹏 2013 原子能科学技术 47 1222Google Scholar

    Guo D X, He C H, Zang H, Xi J Q, Ma L, Yang T, Zhang P 2013 Atom. Energ. Sci. Technol. 47 1222Google Scholar

    [17]

    陈世彬, 张义门, 陈雨生, 黄流兴, 张玉明 2001 高能物理与核物理 25 365Google Scholar

    Chen S B, Zhang Y M, Chen Y S, Huang L X, Zhang Y M 2001 High Energ. Phys. Nucl. 25 365Google Scholar

    [18]

    申帅帅, 贺朝会, 李永宏 2018 67 182401Google Scholar

    Shen S S, He C H, Li Y H 2018 Acta Phys. Sin. 67 182401Google Scholar

    [19]

    Kuboyama S, Kamezawa C, Ikeda N, Hirao T, Ohyama H 2006 IEEE Trans. Nucl. Sci. 53 3343Google Scholar

    [20]

    Kuboyama S, Kamezawa C, Satoh Y, Hirao T, Ohyama H 2007 IEEE Trans. Nucl. Sci. 54 2379Google Scholar

    [21]

    Casey M C, Lauenstein J M, Topper A D, Wilcox E P, Kim H, Phan A M, LaBel K A 2012 The 3rd Annual NEPP Electronic Technology Workshop, Greenbelt, Maryland, USA, June 11−13, 2012 p561

    [22]

    Lauenstein J M, Casey M C, LaBel K A, Topper A D, Wilcox E P, Kim H, Phan A M 2014 The 5th Annual NEPP Electronic Technology Workshop, Greenbelt, Maryland, USA, June 17−19, 2014 p561

    [23]

    Abbate C, Busatto G, Cova P, Delmonte N, Giuliani F, Iannuzzo F, Sanseverino A, Velardi F 2014 Microelectron. Reliab. 54 2200Google Scholar

    [24]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Methods Phys. Res., Sect. B 268 1818Google Scholar

    [25]

    Evseev I G, Schelin H R, Paschuk S A, Milhoretto E, Setti J A P, Yevseyeva O, Assis J T, Hormaza J M, Dıáz K S, Lopes R T 2010 Appl. Radiat. Isot. 68 948Google Scholar

    [26]

    Guide for physics Lists, Collaboration G https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsListGuide/html/index.html/ [2021-4-15]

    [27]

    Physics reference manual, Collaboration G https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsReferenceManual/html/index.html/ [2021-4-15]

    [28]

    Berger M J, Inokuti M, Andersen H H, Bichsel H, Powers D, Seltzer S M, Thwaites D, Watt D E 1993 J. Int. Commission Radiat. Units Meas. 25 49

    [29]

    侯东明, 刘杰, 孙友梅, 姚会军, 段敬来, 尹经敏, 莫丹, 张苓, 陈艳峰 2008 原子能科学技术 07 622Google Scholar

    Hou D M, Liu J, Sun Y M, Yao H J, Duan J L, Yin J M, Mo D, Zhang L, Chen Y F 2008 Atom. Energ. Sci. Technol. 07 622Google Scholar

    [30]

    Hu P P, Liu J, Zhang S X, Maaz K, Zeng J, Zhai P F, Xu L J, Cao Y R, Duan J L, Li Z Z, Sun M Y, Ma X H 2018 Nucl. Instrum. Methods Phys. Res., Sect. B 430 59Google Scholar

    [31]

    Ball D R, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Sierawski B D, Witulski A F, Reed R A, Schrimpf R D, Hutson J M, Javanainen A, Lauenstein J M 2019 IEEE Trans. Nucl. Sci. 67 22Google Scholar

  • [1] Zhang Sen, Lou Qin. A mesoscopic numerical method for enhanced pool boiling heat transfer on conical surfaces under action of electric field. Acta Physica Sinica, 2024, 73(2): 026401. doi: 10.7498/aps.73.20231141
    [2] Shi Lu-Lin, Cheng Rui, Wang Zhao, Cao Shi-Quan, Yang Jie, Zhou Ze-Xian, Chen Yan-Hong, Wang Guo-Dong, Hui De-Xuan, Jin Xue-Jian, Wu Xiao-Xia, Lei Yu, Wang Yu-Yu, Su Mao-Gen. Experimental setup for interaction between highly charged ions and laser-produced plasma near Bohr velocity energy region. Acta Physica Sinica, 2023, 72(13): 133401. doi: 10.7498/aps.72.20230214
    [3] Wang Fu, Zhou Yi, Gao Shi-Xin, Duan Zhen-Gang, Sun Zhi-Peng, Wang Jun, Zou Yu, Fu Bao-Qin. Molecular dynamics study of effects of point defects on thermal conductivity in cubic silicon carbide. Acta Physica Sinica, 2022, 71(3): 036501. doi: 10.7498/aps.71.20211434
    [4] Effects of point defects on thermal conductivity in cubic silicon carbide: A molecular dynamics study. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211434
    [5] Lu Yuan-Yuan, Lu Gui-Hua, Zhou Heng-Wei, Huang Yi-Neng. Preparation and properties of spodumene/silicon carbide composite ceramic materials. Acta Physica Sinica, 2020, 69(11): 117701. doi: 10.7498/aps.69.20200232
    [6] Li Yuan-Yuan, Yu Yin, Meng Chuan-Min, Zhang Lu, Wang Tao, Li Yong-Qiang, He Hong-Liang, He Duan-Wei. Dynamic impact strength of diamond-SiC superhard composite. Acta Physica Sinica, 2019, 68(15): 158101. doi: 10.7498/aps.68.20190350
    [7] Li Yuan, Shi Ai-Hong, Chen Guo-Yu, Gu Bing-Dong. Formation of step bunching on 4H-SiC (0001) surfaces based on kinetic Monte Carlo method. Acta Physica Sinica, 2019, 68(7): 078101. doi: 10.7498/aps.68.20182067
    [8] Chen Zhong, Zhao Zi-Jia, Lü Zhong-Liang, Li Jun-Han, Pan Dong-Mei. Numerical simulation of deuterium-tritium fusion reaction rate in laser plasma based on Monte Carlo-discrete ordinate method. Acta Physica Sinica, 2019, 68(21): 215201. doi: 10.7498/aps.68.20190440
    [9] Liang Chang-Hui,  Zhang Xiao-An,  Li Yao-Zong,  Zhao Yong-Tao,  Zhou Xian-Ming,  Wang Xing,  Mei Ce-Xiang,  Xiao Guo-Qing. Multiple ionization effect of Au induced by different ions. Acta Physica Sinica, 2018, 67(24): 243201. doi: 10.7498/aps.67.20181642
    [10] Chen Feng, Zheng Na, Xu Hai-Bo. Density reconstruction based on energy loss in proton radiography. Acta Physica Sinica, 2018, 67(20): 206101. doi: 10.7498/aps.67.20181039
    [11] Shen Shuai-Shuai, He Chao-Hui, Li Yong-Hong. Non-ionization energy loss of proton in different regions in SiC. Acta Physica Sinica, 2018, 67(18): 182401. doi: 10.7498/aps.67.20181095
    [12] Deng Jia-Chuan, Zhao Yong-Tao, Cheng Rui, Zhou Xian-Ming, Peng Hai-Bo, Wang Yu-Yu, Lei Yu, Liu Shi-Dong, Sun Yuan-Bo, Ren Jie-Ru, Xiao Jia-Hao, Ma Li-Dong, Xiao Guo-Qing, R. Gavrilin, S. Savin, A. Golubev, D. H. H. Hoffmann. Investigation on the energy loss in low energy protons interacting with hydrogen plasma. Acta Physica Sinica, 2015, 64(14): 145202. doi: 10.7498/aps.64.145202
    [13] Song Kun, Chai Chang-Chun, Yang Yin-Tang, Jia Hu-Jun, Chen Bin, Ma Zhen-Yang. Effects of the improved hetero-material-gate approach on sub-micron silicon carbide metal-semiconductor field-effect transistor. Acta Physica Sinica, 2012, 61(17): 177201. doi: 10.7498/aps.61.177201
    [14] Fang Chao, Liu Ma-Lin. The study of the Raman spectra of SiC layers in TRISO particles. Acta Physica Sinica, 2012, 61(9): 097802. doi: 10.7498/aps.61.097802
    [15] Zhou Nai-Gen, Hong Tao, Zhou Lang. A comparative study between MEAM and Tersoff potentials on the characteristics of melting and solidification of carborundum. Acta Physica Sinica, 2012, 61(2): 028101. doi: 10.7498/aps.61.028101
    [16] Gao Rui-Jun, Ge Zi-Ming. Triple differential cross sections of the (e, 2e) reaction for electron impact Ar in a coplanar asymmetric geometry. Acta Physica Sinica, 2010, 59(3): 1702-1706. doi: 10.7498/aps.59.1702
    [17] Lin Tao, Chen Zhi-Ming, Li Jia, Li Lian-Bi, Li Qing-Min, Pu Hong-Bin. Study of the growth characteristics of SiCGe layers grown on 6H-SiC substrates. Acta Physica Sinica, 2008, 57(9): 6007-6012. doi: 10.7498/aps.57.6007
    [18] Yang Huan, Gao Kuang, Zhang Sui-Meng. A theoretical study on (e, 2e) process for helium in large energy loss and close to minimum momentum transfer geometry. Acta Physica Sinica, 2007, 56(9): 5202-5208. doi: 10.7498/aps.56.5202
    [19] Yang Hai-Liang, Qiu Ai-Ci, Li Jing-Ya, Sun Jian-Feng, He Xiao-Ping, Tang Jun-Ping, Wang Hai-Yang, Huang Jian-Jun, Ren Shu-Qing, Zou Li-Li, Yang Li. Energy spectra of high-power ion beams measured with a pile of thin films on FLASH Ⅱ. Acta Physica Sinica, 2005, 54(9): 4072-4078. doi: 10.7498/aps.54.4072
    [20] Wang Gui-Qiu, Wang You-Nian. Influence of laser field on interactions between swift molecular ions and solids. Acta Physica Sinica, 2003, 52(4): 939-946. doi: 10.7498/aps.52.939
Metrics
  • Abstract views:  5984
  • PDF Downloads:  183
  • Cited By: 0
Publishing process
  • Received Date:  16 March 2021
  • Accepted Date:  17 April 2021
  • Available Online:  07 June 2021
  • Published Online:  20 August 2021

/

返回文章
返回
Baidu
map