搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重离子在碳化硅中的输运过程及能量损失

张鸿 郭红霞 潘霄宇 雷志峰 张凤祁 顾朝桥 柳奕天 琚安安 欧阳晓平

引用本文:
Citation:

重离子在碳化硅中的输运过程及能量损失

张鸿, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 顾朝桥, 柳奕天, 琚安安, 欧阳晓平

Transport process and energy loss of heavy ions in silicon carbide

Zhang Hong, Guo Hong-Xia, Pan Xiao-Yu, Lei Zhi-Feng, Zhang Feng-Qi, Gu Zhao-Qiao, Liu Yi-Tian, Ju An-An, Ouyang Xiao-Ping
PDF
HTML
导出引用
  • 利用蒙特卡罗方法, 模拟计算了不同线性能量传输(liner energy transfer, LET)的重离子在碳化硅中的能量损失, 模拟结果表明: 重离子在碳化硅中单位深度的能量损失受离子能量和入射深度共同影响; 能量损失主要由初级重离子和次级电子产生, 非电离能量损失只占总能量损失的1%左右; 随着LET的增大, 次级电子的初始角度和能量分布越来越集中; 重离子诱导产生的电荷沉积峰值位置在重离子径迹中心, 在垂直于入射深度方向上呈高斯线性减小分布. 利用锎源进行碳化硅MOSFET单粒子烧毁试验, 结合TCAD模拟得到不同漏极电压下器件内部电场分布, 在考虑电场作用的蒙特卡罗模拟中发现: 碳化硅MOSFET外延层的电场强度越大, 重离子受电场作用在外延层运动的路径越长、沉积能量越多, 次级电子越容易偏向电场方向运动导致局部能量沉积过高.
    Using the Monte Carlo method, the energy losses in silicon carbide of heavy ions with different linear energy transfers (LETs) are simulated and calculated. The simulation results show that the energy loss per unit depth of heavy ions in silicon carbide is affected by both the ion energy and the incident depth. Primary heavy ions and secondary electrons mainly cause energy loss, and the non-ionization energy loss only accounts for about 1% of the total energy loss. With the increase of LET, the initial angle and energy distribution of the secondary electrons become more and more concentrated. The peak position of the generated charge deposition is in the center of the heavy-ion track, and the distribution is linearly decreasing in Gaussian form in the direction perpendicular to the incident depth. In the californium source experiment of SiC MOSFET, when the drain voltage is 480 V, the device has a single event burnout, and the breakdown voltage of SiC MOSFET is less than 1 V after burnout has occurred. With the experimental results, we carry out the TCAD simulation of SiC MOSFET and obtain the electric field distribution inside the device under different drain voltages. The electric field parameters are used in the Monte Carlo simulation of SiC MOSFET with considering the metal layer. It is found in the Monte Carlo simulation that the greater the electric field of the epitaxial layer, the longer the path of heavy ions moving on the epitaxial layer is and the more the deposited energy, and that the secondary electrons are more likely to move in the direction of the electric field as the electric field increases, resulting in excessive energy deposition in local areas.
      通信作者: 郭红霞, guohongxia@nint.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11875229)资助的课题
      Corresponding author: Guo Hong-Xia, guohongxia@nint.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11875229)
    [1]

    Elasser A, Chow T P 2002 Proc. IEEE 90 969Google Scholar

    [2]

    Johnson C M, Wright N G, Uren M J, Hilton K P, Rahimo M, Hinchley D A, Knights A P, Morrison D J, Horsfall A B, Ortolland S, O’Neill A G 2001 IEE Proc.: Circuits Devices Syst. 148 101Google Scholar

    [3]

    Cooper, Jr J A 1997 Phys. Status Solidi A 162 305Google Scholar

    [4]

    周拥华, 张义门, 张玉明, 孟祥志 2004 11 3710Google Scholar

    Zhou Y H, Zhang Y M, Zhang Y M, Meng X Z 2004 Acta Phys. Sin. 11 3710Google Scholar

    [5]

    秦希峰, 梁毅, 王凤翔, 李双, 付刚, 季艳菊 2011 60 066101Google Scholar

    Qin X F, Liang Y, Wang F X, Li S, Fu G, Ji Y J 2011 Acta Phys. Sin. 60 066101Google Scholar

    [6]

    Zhang X 2013 Ph. D. Dissertation (Nashville: Vanderbilt University)

    [7]

    白玉新, 刘俊琴, 李雪, 曹英健, 张建国, 仲悦 2011 航天标准化 03 10Google Scholar

    Bai Y X, Liu J Q, Li X, Cao Y J, Zhang J G, Zhong Y 2011 Aerospace Standardization 03 10Google Scholar

    [8]

    张林, 张义门, 张玉明, 韩超, 马永吉 2009 58 2737Google Scholar

    Zhou L, Zhang Y M, Zhang Y M, Han C, Man Y J 2009 Acta Phys. Sin. 58 2737Google Scholar

    [9]

    Messenger S R, Burke E A, Summers G P, Xapsos M A, Walters R J, Jackson E M, Weaver B D 1999 IEEE Trans. Nucl. Sci. 46 1595Google Scholar

    [10]

    Messenger S R, Burke E A, Xapsos M A, Summers G P, Walters R J, Jun I 2003 IEEE Trans. Nucl. Sci. 50 1919Google Scholar

    [11]

    Mizuta E, Kuboyama S, Abe H, Iwata Y, Tamura T 2014 IEEE Trans. Nucl. Sci. 61 1924Google Scholar

    [12]

    Witulski A F, Arslanbekov R, Raman A, Schrimpf R D, Sternberg A L, Galloway K F, Javanainen A, Grider D, Lichtenwalner D J, Hull B 2017 IEEE Trans. Nucl. Sci. 65 256Google Scholar

    [13]

    Javanainen A, Galloway K F, Nicklaw C, Bosser A L, Cavrois V F, Lauenstein J M, Pintacuda F, Reed R A, Schrimpf R D, Weller R A, Virtanen A 2016 IEEE Trans. Nucl. Sci. 64 415Google Scholar

    [14]

    Javanainen A, Turowski M, Galloway K F, Nicklaw C, Cavrois V F, Bosser A, Lauenstein J M, Muschitiello M, Pintacuda F, Reed R A, Schrimpf R D, Weller R A, Virtanen A 2017 IEEE Trans. Nucl. Sci. 64 2031Google Scholar

    [15]

    于庆奎, 曹爽, 张洪伟, 梅博, 孙毅, 王贺, 李晓亮, 吕贺, 李鹏伟, 唐民 2019 原子能科学技术 53 2114Google Scholar

    Yu Q K, Cao S, Zhang H W, Mei B, Sun Y, Wang H, Li X L, Lv H, Li P W, Tang M 2019 Atom. Energ. Sci. Technol. 53 2114Google Scholar

    [16]

    郭达禧, 贺朝会, 臧航, 席建琦, 马梨, 杨涛, 张鹏 2013 原子能科学技术 47 1222Google Scholar

    Guo D X, He C H, Zang H, Xi J Q, Ma L, Yang T, Zhang P 2013 Atom. Energ. Sci. Technol. 47 1222Google Scholar

    [17]

    陈世彬, 张义门, 陈雨生, 黄流兴, 张玉明 2001 高能物理与核物理 25 365Google Scholar

    Chen S B, Zhang Y M, Chen Y S, Huang L X, Zhang Y M 2001 High Energ. Phys. Nucl. 25 365Google Scholar

    [18]

    申帅帅, 贺朝会, 李永宏 2018 67 182401Google Scholar

    Shen S S, He C H, Li Y H 2018 Acta Phys. Sin. 67 182401Google Scholar

    [19]

    Kuboyama S, Kamezawa C, Ikeda N, Hirao T, Ohyama H 2006 IEEE Trans. Nucl. Sci. 53 3343Google Scholar

    [20]

    Kuboyama S, Kamezawa C, Satoh Y, Hirao T, Ohyama H 2007 IEEE Trans. Nucl. Sci. 54 2379Google Scholar

    [21]

    Casey M C, Lauenstein J M, Topper A D, Wilcox E P, Kim H, Phan A M, LaBel K A 2012 The 3rd Annual NEPP Electronic Technology Workshop, Greenbelt, Maryland, USA, June 11−13, 2012 p561

    [22]

    Lauenstein J M, Casey M C, LaBel K A, Topper A D, Wilcox E P, Kim H, Phan A M 2014 The 5th Annual NEPP Electronic Technology Workshop, Greenbelt, Maryland, USA, June 17−19, 2014 p561

    [23]

    Abbate C, Busatto G, Cova P, Delmonte N, Giuliani F, Iannuzzo F, Sanseverino A, Velardi F 2014 Microelectron. Reliab. 54 2200Google Scholar

    [24]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Methods Phys. Res., Sect. B 268 1818Google Scholar

    [25]

    Evseev I G, Schelin H R, Paschuk S A, Milhoretto E, Setti J A P, Yevseyeva O, Assis J T, Hormaza J M, Dıáz K S, Lopes R T 2010 Appl. Radiat. Isot. 68 948Google Scholar

    [26]

    Guide for physics Lists, Collaboration G https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsListGuide/html/index.html/ [2021-4-15]

    [27]

    Physics reference manual, Collaboration G https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsReferenceManual/html/index.html/ [2021-4-15]

    [28]

    Berger M J, Inokuti M, Andersen H H, Bichsel H, Powers D, Seltzer S M, Thwaites D, Watt D E 1993 J. Int. Commission Radiat. Units Meas. 25 49

    [29]

    侯东明, 刘杰, 孙友梅, 姚会军, 段敬来, 尹经敏, 莫丹, 张苓, 陈艳峰 2008 原子能科学技术 07 622Google Scholar

    Hou D M, Liu J, Sun Y M, Yao H J, Duan J L, Yin J M, Mo D, Zhang L, Chen Y F 2008 Atom. Energ. Sci. Technol. 07 622Google Scholar

    [30]

    Hu P P, Liu J, Zhang S X, Maaz K, Zeng J, Zhai P F, Xu L J, Cao Y R, Duan J L, Li Z Z, Sun M Y, Ma X H 2018 Nucl. Instrum. Methods Phys. Res., Sect. B 430 59Google Scholar

    [31]

    Ball D R, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Sierawski B D, Witulski A F, Reed R A, Schrimpf R D, Hutson J M, Javanainen A, Lauenstein J M 2019 IEEE Trans. Nucl. Sci. 67 22Google Scholar

  • 图 1  不同LET的重离子入射碳化硅的径迹分布 (a) 34.08 MeV·cm2/mg; (b) 44.73 MeV·cm2/mg; (c) 69.72 MeV·cm2/mg

    Fig. 1.  Track distribution of heavy ions with different LET incident on silicon carbide: (a) 34.08 MeV·cm2/mg; (b) 44.73 MeV·cm2/mg; (c) 69.72 MeV·cm2/mg

    图 2  不同LET的重离子产生的能量损失随入射深度的变化

    Fig. 2.  The energy loss of heavy ions with different LET changes with the depth of incidence.

    图 3  不同粒子造成的能量沉积随LET的变化

    Fig. 3.  Variation of energy deposition caused by different particles with LET.

    图 4  不同LET下总能量损失的空间分布 (a) 34.08 MeV·cm2/mg; (b) 44.73 MeV·cm2/mg; (c) 69.72 MeV·cm2/mg

    Fig. 4.  Spatial distribution of total energy loss under different LET: (a) 34.08 MeV·cm2/mg; (b) 44.73 MeV·cm2/mg; (c) 69.72 MeV·cm2/mg.

    图 5  不同LET下次级电子径迹的空间分布: (a) 34.08 MeV·cm2/mg; (b) 44.73 MeV·cm2/mg; (c) 69.72 MeV·cm2/mg

    Fig. 5.  Spatial distribution of electron tracks under different LET: (a) 34.08 MeV·cm2/mg; (b) 44.73 MeV·cm2/mg; (c) 69.72 MeV·cm2/mg

    图 6  不同LET下次级电子的初始能量及角度分布: (a) 34.08 MeV·cm2/mg; (b) 44.73 MeV·cm2/mg; (c) 69.72 MeV·cm2/mg

    Fig. 6.  The initial kinetic energy and angle distribution of secondary electron under different LET: (a) 34.08 MeV·cm2/mg; (b) 44.73 MeV·cm2/mg; (c) 69.72 MeV·cm2/mg

    图 7  总能量损失在碳化硅中的时间分布随LET的变化

    Fig. 7.  Time distribution of total energy loss in SiC as a function of LET.

    图 8  非电离能量损失在碳化硅中的时间分布随LET的变化

    Fig. 8.  The time distribution of non-ionizing energy loss in SiC varies with LET.

    图 9  不同LET下碳化硅中的非电离能量损失随深度的变化

    Fig. 9.  The non-ionizing energy loss in SiC varies with depth under different LET.

    图 10  不同LET下电荷沉积在垂直于重离子径迹方向的分布

    Fig. 10.  Distribution of charge deposition perpendicular to the direction of heavy ion tracks under different LET.

    图 11  单粒子效应试验电路图

    Fig. 11.  Single event effect test circuit diagram.

    图 12  碳化硅MOSFET单粒子烧毁特征 (a)烧毁时瞬态漏电流剧增; (b)击穿特性丧失

    Fig. 12.  SEB characteristics of silicon carbide MOSFET: (a) Transient leakage current increases sharply when burned out; (b) loss of breakdown characteristics.

    图 13  不同漏极偏压下碳化硅MOSFET内部的电场分布 (a)二维分布; (b)一维分布

    Fig. 13.  The electric field distribution inside the silicon carbide MOSFET under different drain bias voltages: (a) Two-dimensional distribution; (b) one-dimensional distribution.

    图 14  碳化硅MOSFET内部结构示意图 (a)切片分析结果; (b)Geant4仿真模型

    Fig. 14.  Schematic diagram of the internal structure of silicon carbide MOSFET: (a) Slice analysis results; (b) Geant4 simulation model.

    图 15  不同漏极偏置电压下碳化硅MOSFET外延层的能量沉积分布 (a)VDrain = 0 V; (b)VDrain = 480 V; (c)VDrain = 1000 V

    Fig. 15.  Energy deposition distribution of epitaxial layer of silicon carbide MOSFET under different drain bias voltage: (a) VDrain = 0 V; (b) VDrain = 480 V; (c) VDrain = 1000 V.

    表 1  选取的重离子种类、能量及其在材料中的射程

    Table 1.  Selected heavy ion, energy and range of heavy ions in silicon carbide.

    重离子能量/MeVSiC中射程/μm@SRIMSiC中射程/μm@Geant4SiC中LET /(MeV·cm2·mg–1)Si中LET /(MeV·cm2·mg–1)
    铜 (Cu+)21222.0121.534.0832.2
    溴 (Br+)21819.9718.544.7342
    碘 (I+)27019.2116.569.7265
    下载: 导出CSV
    Baidu
  • [1]

    Elasser A, Chow T P 2002 Proc. IEEE 90 969Google Scholar

    [2]

    Johnson C M, Wright N G, Uren M J, Hilton K P, Rahimo M, Hinchley D A, Knights A P, Morrison D J, Horsfall A B, Ortolland S, O’Neill A G 2001 IEE Proc.: Circuits Devices Syst. 148 101Google Scholar

    [3]

    Cooper, Jr J A 1997 Phys. Status Solidi A 162 305Google Scholar

    [4]

    周拥华, 张义门, 张玉明, 孟祥志 2004 11 3710Google Scholar

    Zhou Y H, Zhang Y M, Zhang Y M, Meng X Z 2004 Acta Phys. Sin. 11 3710Google Scholar

    [5]

    秦希峰, 梁毅, 王凤翔, 李双, 付刚, 季艳菊 2011 60 066101Google Scholar

    Qin X F, Liang Y, Wang F X, Li S, Fu G, Ji Y J 2011 Acta Phys. Sin. 60 066101Google Scholar

    [6]

    Zhang X 2013 Ph. D. Dissertation (Nashville: Vanderbilt University)

    [7]

    白玉新, 刘俊琴, 李雪, 曹英健, 张建国, 仲悦 2011 航天标准化 03 10Google Scholar

    Bai Y X, Liu J Q, Li X, Cao Y J, Zhang J G, Zhong Y 2011 Aerospace Standardization 03 10Google Scholar

    [8]

    张林, 张义门, 张玉明, 韩超, 马永吉 2009 58 2737Google Scholar

    Zhou L, Zhang Y M, Zhang Y M, Han C, Man Y J 2009 Acta Phys. Sin. 58 2737Google Scholar

    [9]

    Messenger S R, Burke E A, Summers G P, Xapsos M A, Walters R J, Jackson E M, Weaver B D 1999 IEEE Trans. Nucl. Sci. 46 1595Google Scholar

    [10]

    Messenger S R, Burke E A, Xapsos M A, Summers G P, Walters R J, Jun I 2003 IEEE Trans. Nucl. Sci. 50 1919Google Scholar

    [11]

    Mizuta E, Kuboyama S, Abe H, Iwata Y, Tamura T 2014 IEEE Trans. Nucl. Sci. 61 1924Google Scholar

    [12]

    Witulski A F, Arslanbekov R, Raman A, Schrimpf R D, Sternberg A L, Galloway K F, Javanainen A, Grider D, Lichtenwalner D J, Hull B 2017 IEEE Trans. Nucl. Sci. 65 256Google Scholar

    [13]

    Javanainen A, Galloway K F, Nicklaw C, Bosser A L, Cavrois V F, Lauenstein J M, Pintacuda F, Reed R A, Schrimpf R D, Weller R A, Virtanen A 2016 IEEE Trans. Nucl. Sci. 64 415Google Scholar

    [14]

    Javanainen A, Turowski M, Galloway K F, Nicklaw C, Cavrois V F, Bosser A, Lauenstein J M, Muschitiello M, Pintacuda F, Reed R A, Schrimpf R D, Weller R A, Virtanen A 2017 IEEE Trans. Nucl. Sci. 64 2031Google Scholar

    [15]

    于庆奎, 曹爽, 张洪伟, 梅博, 孙毅, 王贺, 李晓亮, 吕贺, 李鹏伟, 唐民 2019 原子能科学技术 53 2114Google Scholar

    Yu Q K, Cao S, Zhang H W, Mei B, Sun Y, Wang H, Li X L, Lv H, Li P W, Tang M 2019 Atom. Energ. Sci. Technol. 53 2114Google Scholar

    [16]

    郭达禧, 贺朝会, 臧航, 席建琦, 马梨, 杨涛, 张鹏 2013 原子能科学技术 47 1222Google Scholar

    Guo D X, He C H, Zang H, Xi J Q, Ma L, Yang T, Zhang P 2013 Atom. Energ. Sci. Technol. 47 1222Google Scholar

    [17]

    陈世彬, 张义门, 陈雨生, 黄流兴, 张玉明 2001 高能物理与核物理 25 365Google Scholar

    Chen S B, Zhang Y M, Chen Y S, Huang L X, Zhang Y M 2001 High Energ. Phys. Nucl. 25 365Google Scholar

    [18]

    申帅帅, 贺朝会, 李永宏 2018 67 182401Google Scholar

    Shen S S, He C H, Li Y H 2018 Acta Phys. Sin. 67 182401Google Scholar

    [19]

    Kuboyama S, Kamezawa C, Ikeda N, Hirao T, Ohyama H 2006 IEEE Trans. Nucl. Sci. 53 3343Google Scholar

    [20]

    Kuboyama S, Kamezawa C, Satoh Y, Hirao T, Ohyama H 2007 IEEE Trans. Nucl. Sci. 54 2379Google Scholar

    [21]

    Casey M C, Lauenstein J M, Topper A D, Wilcox E P, Kim H, Phan A M, LaBel K A 2012 The 3rd Annual NEPP Electronic Technology Workshop, Greenbelt, Maryland, USA, June 11−13, 2012 p561

    [22]

    Lauenstein J M, Casey M C, LaBel K A, Topper A D, Wilcox E P, Kim H, Phan A M 2014 The 5th Annual NEPP Electronic Technology Workshop, Greenbelt, Maryland, USA, June 17−19, 2014 p561

    [23]

    Abbate C, Busatto G, Cova P, Delmonte N, Giuliani F, Iannuzzo F, Sanseverino A, Velardi F 2014 Microelectron. Reliab. 54 2200Google Scholar

    [24]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Methods Phys. Res., Sect. B 268 1818Google Scholar

    [25]

    Evseev I G, Schelin H R, Paschuk S A, Milhoretto E, Setti J A P, Yevseyeva O, Assis J T, Hormaza J M, Dıáz K S, Lopes R T 2010 Appl. Radiat. Isot. 68 948Google Scholar

    [26]

    Guide for physics Lists, Collaboration G https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsListGuide/html/index.html/ [2021-4-15]

    [27]

    Physics reference manual, Collaboration G https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsReferenceManual/html/index.html/ [2021-4-15]

    [28]

    Berger M J, Inokuti M, Andersen H H, Bichsel H, Powers D, Seltzer S M, Thwaites D, Watt D E 1993 J. Int. Commission Radiat. Units Meas. 25 49

    [29]

    侯东明, 刘杰, 孙友梅, 姚会军, 段敬来, 尹经敏, 莫丹, 张苓, 陈艳峰 2008 原子能科学技术 07 622Google Scholar

    Hou D M, Liu J, Sun Y M, Yao H J, Duan J L, Yin J M, Mo D, Zhang L, Chen Y F 2008 Atom. Energ. Sci. Technol. 07 622Google Scholar

    [30]

    Hu P P, Liu J, Zhang S X, Maaz K, Zeng J, Zhai P F, Xu L J, Cao Y R, Duan J L, Li Z Z, Sun M Y, Ma X H 2018 Nucl. Instrum. Methods Phys. Res., Sect. B 430 59Google Scholar

    [31]

    Ball D R, Galloway K F, Johnson R A, Alles M L, Sternberg A L, Sierawski B D, Witulski A F, Reed R A, Schrimpf R D, Hutson J M, Javanainen A, Lauenstein J M 2019 IEEE Trans. Nucl. Sci. 67 22Google Scholar

  • [1] 张森, 娄钦. 电场作用下锥翅表面强化池沸腾换热的介观数值方法.  , 2024, 73(2): 026401. doi: 10.7498/aps.73.20231141
    [2] 史路林, 程锐, 王昭, 曹世权, 杨杰, 周泽贤, 陈燕红, 王国东, 惠得轩, 金雪剑, 吴晓霞, 雷瑜, 王瑜玉, 苏茂根. 近玻尔速度能区高电荷态离子与激光等离子体相互作用实验研究装置.  , 2023, 72(13): 133401. doi: 10.7498/aps.72.20230214
    [3] 王甫, 周毅, 高士鑫, 段振刚, 孙志鹏, 汪俊, 邹宇, 付宝勤. 碳化硅中点缺陷对热传导性能影响的分子动力学研究.  , 2022, 71(3): 036501. doi: 10.7498/aps.71.20211434
    [4] 王甫, 周毅, 高士鑫, 段振刚, 孙志鹏, 汪俊(Jun Wang), 邹 宇, 付宝勤(Baoqin Fu). 碳化硅中点缺陷对热传导性能影响的分子动力学研究.  , 2021, (): . doi: 10.7498/aps.70.20211434
    [5] 鲁媛媛, 鹿桂花, 周恒为, 黄以能. 锂辉石/碳化硅复相陶瓷材料的制备与性能.  , 2020, 69(11): 117701. doi: 10.7498/aps.69.20200232
    [6] 李媛媛, 喻寅, 孟川民, 张陆, 王涛, 李永强, 贺红亮, 贺端威. 金刚石-碳化硅超硬复合材料的冲击强度.  , 2019, 68(15): 158101. doi: 10.7498/aps.68.20190350
    [7] 李源, 石爱红, 陈国玉, 顾秉栋. 基于蒙特卡罗方法的4H-SiC(0001)面聚并台阶形貌演化机理.  , 2019, 68(7): 078101. doi: 10.7498/aps.68.20182067
    [8] 陈忠, 赵子甲, 吕中良, 李俊汉, 潘冬梅. 基于蒙特卡罗-离散纵标方法的氘氚激光等离子体聚变反应率数值模拟.  , 2019, 68(21): 215201. doi: 10.7498/aps.68.20190440
    [9] 梁昌慧, 张小安, 李耀宗, 赵永涛, 周贤明, 王兴, 梅策香, 肖国青. 不同离子激发Au靶的多电离效应.  , 2018, 67(24): 243201. doi: 10.7498/aps.67.20181642
    [10] 陈锋, 郑娜, 许海波. 质子照相中基于能量损失的密度重建.  , 2018, 67(20): 206101. doi: 10.7498/aps.67.20181039
    [11] 申帅帅, 贺朝会, 李永宏. 质子在碳化硅中不同深度的非电离能量损失.  , 2018, 67(18): 182401. doi: 10.7498/aps.67.20181095
    [12] 邓佳川, 赵永涛, 程锐, 周贤明, 彭海波, 王瑜玉, 雷瑜, 刘世东, 孙渊博, 任洁茹, 肖家浩, 麻礼东, 肖国青, R. Gavrilin, S. Savin, A. Golubev, D. H. H. Hoffmann. 低能质子束在氢等离子体中的能损研究.  , 2015, 64(14): 145202. doi: 10.7498/aps.64.145202
    [13] 宋坤, 柴常春, 杨银堂, 贾护军, 陈斌, 马振洋. 改进型异质栅对深亚微米栅长碳化硅MESFET特性影响.  , 2012, 61(17): 177201. doi: 10.7498/aps.61.177201
    [14] 房超, 刘马林. 包覆燃料颗粒碳化硅层的Raman光谱研究.  , 2012, 61(9): 097802. doi: 10.7498/aps.61.097802
    [15] 周耐根, 洪涛, 周浪. MEAM势与Tersoff势比较研究碳化硅熔化与凝固行为.  , 2012, 61(2): 028101. doi: 10.7498/aps.61.028101
    [16] 高瑞军, 葛自明. 共面不对称条件下Ar原子(e, 2e)反应的三重微分截面.  , 2010, 59(3): 1702-1706. doi: 10.7498/aps.59.1702
    [17] 林 涛, 陈治明, 李 佳, 李连碧, 李青民, 蒲红斌. 6H碳化硅衬底上硅碳锗薄膜的生长特性研究.  , 2008, 57(9): 6007-6012. doi: 10.7498/aps.57.6007
    [18] 杨 欢, 高 矿, 张穗萌. 大能量损失小动量转移几何条件下氦原子(e, 2e)反应的理论研究.  , 2007, 56(9): 5202-5208. doi: 10.7498/aps.56.5202
    [19] 杨海亮, 邱爱慈, 李静雅, 孙剑锋, 何小平, 汤俊萍, 王海洋, 黄建军, 任书庆, 邹丽丽, 杨 莉. 叠片法测量“闪光二号”加速器的高功率离子束能谱.  , 2005, 54(9): 4072-4078. doi: 10.7498/aps.54.4072
    [20] 王桂秋, 王友年. 激光场对快速分子离子与固体相互作用的影响.  , 2003, 52(4): 939-946. doi: 10.7498/aps.52.939
计量
  • 文章访问数:  5983
  • PDF下载量:  183
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-16
  • 修回日期:  2021-04-17
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-20

/

返回文章
返回
Baidu
map