-
Based on the device operation mechanism and physical model, effects of the improved hetero-material-gate (HMG) approach on deep sub-micron silicon carbide (SiC) metal-semiconductor field-effect transistor (MESFET) are analyzed. By comparing with the conventional MESFET, it is shown that the improved HMG approach induces a multi-stepped distribution of the potential in the channel, leading to an enhanced electric field at the source. Meanwhile, the position of the maximum of the channel potential is changed to the drain side compared with the dual-material-gate (DMG) device, thus the carriers in the channel are accelerated more efficiently and the variation of potential caused by drain voltage is eliminated to a certain degree, resulting in a better restraint in short-channel effect. Also, different technological parameters are designed to study the dependence of the device performance and an optimization plan is obtained, leading to a decreased sub-threshold swing. In addition, asymmetric gate structures are designed for high power application, achieving an improved distribution of the electric field at the gate edge and an enhanced breakdown voltage of the small scale device.
-
Keywords:
- silicon carbide /
- metal-semiconductor field-effect transistor /
- hetero-material-gate /
- short-channel effect
[1] Clarke R C, Palmour J W 2002 Proc. IEEE. 90 987
[2] Lü H L, Zhang Y M, Zhang Y M 2004 IEEE Trans. Electr. Dev. 51 1065
[3] Lü H L, Zhang Y M, Zhang Y M, Che Y, Cao Q J, Zheng S J 2008 Appl. Phys. A 91 287
[4] Lü H L, Zhang Y M, Zhang Y M, Che Y 2008 Chin. Phys. B 17 1410
[5] Cao Q J, Zhang Y M, Zhang Y M 2008 Chin. Phys. B 17 4622
[6] Lü H L, Zhang Y M, Che Y, Wang Y H, Chen L 2008 Acta Phys. Sin. 57 2871 (in Chinese) [吕红亮, 张义门, 车勇, 王悦湖, 陈亮 2008 57 2871]
[7] Lü H L, Zhang Y M, Zhang Y M, Zhang T 2009 Sol. St. Electr. 53 285
[8] Deng X C, Zhang B, Zhang Y R, Wang Y, Li Z J 2011 Chin. Phys. B 20 017304-1
[9] Zhu C L, Rusli, Zhao P 2007 Sol. St. Electr. 51 343
[10] Chen G, Qin Y F, Bai S, Wu P, Li Z Y, Chen Z, Han P 2010 Sol. St. Electr. 54 353
[11] Henry H G, Augustine G, DeSalvo G C 2004 IEEE Trans. Electr. Dev. 51 839
[12] Hjelmgren H, Allerstam F, Andersson K, Nilsson P AA, Rorsman N 2010 IEEE Trans. Electr. Dev. 57 729
[13] Cao Q J, Zhang Y M, Jia L X 2009 Chin. Phys. B 18 4456
[14] Ogura S, Tsang P J, Walker W W 1980 IEEE Trans. Electr. Dev. 27 1359
[15] Binari S C, Klein P B, Kazior T E 2002 Proc. IEEE. 90 1048
[16] Hilton K P, Uren M J, Hayes D G 2002 Mater. Sci. Forum. 389-393 1387
[17] Mitra S, Rao M V, Jones A K 2004 Sol. St. Electr. 48 143
[18] Long W, Qu H, Kuo J M, Chin K K 1999 IEEE Trans. Electr. Dev. 46 865
[19] Hashemi P, Behnam A, Fathi E, Afzali-Kusha A, Nokali M E 2005 Sol. St. Electr. 49 1341
[20] Wakabayashi H, Saito Y, Takeuchi K, Mogami T, Kunio T 2001 IEEE Trans. Electr. Dev. 48 2363
[21] Roschke M, Schwierz F 2001 IEEE Trans. Electr. Dev. 48 1442
[22] Grivickas P, Galeckas A, Linnros J, Syvajarvi M, Yakimova R, Grivickas V, Tellefsen J A 2001 Mater. Sci. in Semiconductor Processing. 4 191
[23] DESSIS-ISE Manual Ver. 10.0, ISE
[24] Manabu A, Hirotake H, Shuichi O, Hiroshi S, Makoto O 2003 Elecronics and Communications in Japan Part 2. 86 386
[25] Itoh A, Matsunami H 1997 Physica Status Solidi A-Applied Research. 162 389
[26] Hatayama T, Kawahito H, Kijima H, Uraoka Y, Fuyuki T 2002 Mater. Sci. Forum. 389-393 925
[27] Roccaforte F, Via L, Raineri F, Musumeci V, Calcagno P, Condorelli L G G 2003 Appl. Phys. A: Mat. Sci. & Proc. 77 827
[28] Lee S K, Zetterling C M, Östling M 2000 J. Appl. Phys. 87 8039
-
[1] Clarke R C, Palmour J W 2002 Proc. IEEE. 90 987
[2] Lü H L, Zhang Y M, Zhang Y M 2004 IEEE Trans. Electr. Dev. 51 1065
[3] Lü H L, Zhang Y M, Zhang Y M, Che Y, Cao Q J, Zheng S J 2008 Appl. Phys. A 91 287
[4] Lü H L, Zhang Y M, Zhang Y M, Che Y 2008 Chin. Phys. B 17 1410
[5] Cao Q J, Zhang Y M, Zhang Y M 2008 Chin. Phys. B 17 4622
[6] Lü H L, Zhang Y M, Che Y, Wang Y H, Chen L 2008 Acta Phys. Sin. 57 2871 (in Chinese) [吕红亮, 张义门, 车勇, 王悦湖, 陈亮 2008 57 2871]
[7] Lü H L, Zhang Y M, Zhang Y M, Zhang T 2009 Sol. St. Electr. 53 285
[8] Deng X C, Zhang B, Zhang Y R, Wang Y, Li Z J 2011 Chin. Phys. B 20 017304-1
[9] Zhu C L, Rusli, Zhao P 2007 Sol. St. Electr. 51 343
[10] Chen G, Qin Y F, Bai S, Wu P, Li Z Y, Chen Z, Han P 2010 Sol. St. Electr. 54 353
[11] Henry H G, Augustine G, DeSalvo G C 2004 IEEE Trans. Electr. Dev. 51 839
[12] Hjelmgren H, Allerstam F, Andersson K, Nilsson P AA, Rorsman N 2010 IEEE Trans. Electr. Dev. 57 729
[13] Cao Q J, Zhang Y M, Jia L X 2009 Chin. Phys. B 18 4456
[14] Ogura S, Tsang P J, Walker W W 1980 IEEE Trans. Electr. Dev. 27 1359
[15] Binari S C, Klein P B, Kazior T E 2002 Proc. IEEE. 90 1048
[16] Hilton K P, Uren M J, Hayes D G 2002 Mater. Sci. Forum. 389-393 1387
[17] Mitra S, Rao M V, Jones A K 2004 Sol. St. Electr. 48 143
[18] Long W, Qu H, Kuo J M, Chin K K 1999 IEEE Trans. Electr. Dev. 46 865
[19] Hashemi P, Behnam A, Fathi E, Afzali-Kusha A, Nokali M E 2005 Sol. St. Electr. 49 1341
[20] Wakabayashi H, Saito Y, Takeuchi K, Mogami T, Kunio T 2001 IEEE Trans. Electr. Dev. 48 2363
[21] Roschke M, Schwierz F 2001 IEEE Trans. Electr. Dev. 48 1442
[22] Grivickas P, Galeckas A, Linnros J, Syvajarvi M, Yakimova R, Grivickas V, Tellefsen J A 2001 Mater. Sci. in Semiconductor Processing. 4 191
[23] DESSIS-ISE Manual Ver. 10.0, ISE
[24] Manabu A, Hirotake H, Shuichi O, Hiroshi S, Makoto O 2003 Elecronics and Communications in Japan Part 2. 86 386
[25] Itoh A, Matsunami H 1997 Physica Status Solidi A-Applied Research. 162 389
[26] Hatayama T, Kawahito H, Kijima H, Uraoka Y, Fuyuki T 2002 Mater. Sci. Forum. 389-393 925
[27] Roccaforte F, Via L, Raineri F, Musumeci V, Calcagno P, Condorelli L G G 2003 Appl. Phys. A: Mat. Sci. & Proc. 77 827
[28] Lee S K, Zetterling C M, Östling M 2000 J. Appl. Phys. 87 8039
Catalog
Metrics
- Abstract views: 6422
- PDF Downloads: 369
- Cited By: 0