-
利用蒙特卡罗方法模拟六孔球形黑腔中的辐射输运, 研究靶球辐照均匀性问题. 对于几何结构简单的解析模型, 研究了不同黑腔靶球半径比的靶球辐照均匀性变化规律, 得出的结论与解析的“视因子”方法给出的一致. 对于几何结构复杂的黑腔模型, 如放置有挡板的模型, 解析方法计算困难, 但利用蒙特卡罗方法仍然能够准确模拟计算. 不同挡板大小的理论模型计算结果表明, 挡板对X光输运到靶球表面的分布状况有明显的影响, 如果设置得当则可以提高X光利用效率并显著改善靶球辐照均匀性, 否则可能严重破坏靶球辐照均匀性. 因此, 黑腔中的挡板位置及大小需要精心设计. 应用表明, 蒙特卡罗方法对于具有复杂结构的黑腔辐射输运问题具有很好的适应性.To simulate the radiation transport of the spherical hohlraum with octahedral six laser entrance holes and to study the capsule radiation uniformity, a Monte Carlo method is introduced. For simple analytical models, with different hohlraumto-capsule radius ratios, the capsule radiation uniformity variation rules are studied, and the Monte Carlo calculation results can match the analytical results obtained by the “view factor” method. For more complicated models, such as the hohlraum with shields, it's difficult for an analytical method to be calculated, but is straightforward in the Monte Carlo method. Two models with different radius of the shield have been simulated. Simulated result indicates that the shield greatly influences the distribution of X-rays on the capsule surface, and an appropriate shield can increase the utilized efficiency of X-rays and improve the capsule radiation uniformity remarkably, otherwise, the uniformity might be destroyed badly. So the location and the radius of the shields must be designed carefully in a spherical hohlraum. This research supports the Monte Carlo method that is applicable in the radiation transport simulation of a complicated spherical holhraum.
-
Keywords:
- Monte Carlo method /
- spherical holhraum /
- radiation transport /
- capsule radiation uniformity
[1] Zhang J, Chang T Q 2004 Fundaments of the Target Physics for Laser Fusion (Beijing: National Defense Industry Press) (in Chinese) [张均, 常铁强 2004 激光核聚变靶物理基础(北京: 国防工业出版社)]
[2] Lindle J D 1995 Phys. Plasmas 2 3933
[3] Haan S W, Lindl J D, Callanhan D A, Clark D S, Salmonson J D, Hammel B A, Atherton L J, Cook R C, Edwards M J, Glenzer S, Hamza A V, Hatchett S P, Herrmann M C, Hinkel D E, Ho D D, Huang H, Jones O S, Kline J, Kyrala G, Landen O L, MacGowan B J, Marinak M M, Meyerhofer D D, Milovich J L, Moreno K A, Moses E I, Munro D H, Nikroo A, Olson R E, Peterson K, Pollaine S M, Ralph J E, Robey H F, Spears B K, Springer P T, Suter L J, Thomas C A, Town R P, Vesey R, Weber S V, Wilkens H L, Wilson D C 2011 Phys. Plasmas 18 051001
[4] Lindl J D 1998 Inertial Confinement Fusion (New York: Springer-Verlag)
[5] Caruso A, Strangio C 1991 Jpn. J. Appl. Phys. Part 1 30 1095
[6] Amendt P, Cerjan C, Hamza A, Hinkel D E, Milovich J L, Robey H F 2007 Phys. Plasmas 14 056312
[7] Lan K, Gu P J, Ren G L, Wu C, Huo W Y, Lai D X, He X T 2010 Laser Part. Beams 28 421
[8] Murakami M 1992 Nucl. Fusion 32 1715
[9] Phillion D W, Pollaine S M 1994 Phys. Plasmas 1 2963
[10] Kline J L, Callahan D A, Glenzer S H, Meezan N B, Moody J D, Hinkel D E, Jones O S, MacKinnon A J, Bennedetti R, Berger R L, Bradley D, Dewald E L, Bass L, Bennett C, Bowers M, Brunton B, Bude J, Burkhart S, Condor A, Nicola J M D, Nicola P D, Dixit S N, Doeppner T, Dzenitis E G, Erber G, Folta J, Grim G, Lenn S, Hamza A, Hann S W, Heebner J, Henesian M, Hermann M, Hicks D G, Hsing W W, Izumi N, Jancaitis K, Jones O S, Kalantar D, Khan S F, Kirkwook R, Kyrala G A, LaFortune K, Landen O L, Lain L, Larson D, Pape S L, Ma T, MacPhee A G, Michel P A, Miller P, Montincelli M, Moore A S, Nikroo A, Nostrand M, Olson R E, Pak A, Park H A, Schneider M B, Shaw M, Smalyuk V A, Strozzi D J, Suratwala T, Suter L J, Tommasini R, Town R P J, Wonterghem B V, Wegner P, Widmann K, Widmayer C, Wilkens H, Williams E A, Edwards M J, Remington B A, MacGowan B J, Kikenny J D, Lindl J D, Atherton L J, Batha S H, Moses E 2013 Phys. Plasmas 20 056314
[11] Lan K, Liu J, Lai D X, Zheng W D, He X T 2014 Phys. Plasmas 21 010704
[12] Lan K, He X T, Liu J, Zheng W D, Lai D X 2014 Phys. Plasmas 21 052704
[13] Callahan D A, Amendt P, Dewald E L, Haan S W, Hinkel D E, Izurni N, Jones O S, Landen O L, Lindl J D, Pollaine S M, Suter L J, Tabak M, Turner R E 2006 Phys. Plasmas 13 056307
[14] Pei L C, Zhang X Z 1980 Monte Carlo Methods and Application in Particle Transportation (Beijing: Science Press) (in Chinese) [裴鹿成, 张孝泽 1980 蒙特卡罗方法及其在粒子输运问题中的应用 (北京:科学出版社)]
[15] Du S H, Zhang S F, Feng T G, Wang Y Z 1989 Computer Simulation of Transport Problems (Changsha: Hunan Science and Technology Press) (in Chinese) [杜书华, 张树发, 冯庭桂, 王元璋 1989 输运问题的计算机模拟(湖南科技出版社)]
[16] Li S, Li G, Tian D F, Deng L 2013 Acta Phys. Sin. 62 249501 (in Chinese) [李树, 李刚, 田东风, 邓力 2013 62 249501]
-
[1] Zhang J, Chang T Q 2004 Fundaments of the Target Physics for Laser Fusion (Beijing: National Defense Industry Press) (in Chinese) [张均, 常铁强 2004 激光核聚变靶物理基础(北京: 国防工业出版社)]
[2] Lindle J D 1995 Phys. Plasmas 2 3933
[3] Haan S W, Lindl J D, Callanhan D A, Clark D S, Salmonson J D, Hammel B A, Atherton L J, Cook R C, Edwards M J, Glenzer S, Hamza A V, Hatchett S P, Herrmann M C, Hinkel D E, Ho D D, Huang H, Jones O S, Kline J, Kyrala G, Landen O L, MacGowan B J, Marinak M M, Meyerhofer D D, Milovich J L, Moreno K A, Moses E I, Munro D H, Nikroo A, Olson R E, Peterson K, Pollaine S M, Ralph J E, Robey H F, Spears B K, Springer P T, Suter L J, Thomas C A, Town R P, Vesey R, Weber S V, Wilkens H L, Wilson D C 2011 Phys. Plasmas 18 051001
[4] Lindl J D 1998 Inertial Confinement Fusion (New York: Springer-Verlag)
[5] Caruso A, Strangio C 1991 Jpn. J. Appl. Phys. Part 1 30 1095
[6] Amendt P, Cerjan C, Hamza A, Hinkel D E, Milovich J L, Robey H F 2007 Phys. Plasmas 14 056312
[7] Lan K, Gu P J, Ren G L, Wu C, Huo W Y, Lai D X, He X T 2010 Laser Part. Beams 28 421
[8] Murakami M 1992 Nucl. Fusion 32 1715
[9] Phillion D W, Pollaine S M 1994 Phys. Plasmas 1 2963
[10] Kline J L, Callahan D A, Glenzer S H, Meezan N B, Moody J D, Hinkel D E, Jones O S, MacKinnon A J, Bennedetti R, Berger R L, Bradley D, Dewald E L, Bass L, Bennett C, Bowers M, Brunton B, Bude J, Burkhart S, Condor A, Nicola J M D, Nicola P D, Dixit S N, Doeppner T, Dzenitis E G, Erber G, Folta J, Grim G, Lenn S, Hamza A, Hann S W, Heebner J, Henesian M, Hermann M, Hicks D G, Hsing W W, Izumi N, Jancaitis K, Jones O S, Kalantar D, Khan S F, Kirkwook R, Kyrala G A, LaFortune K, Landen O L, Lain L, Larson D, Pape S L, Ma T, MacPhee A G, Michel P A, Miller P, Montincelli M, Moore A S, Nikroo A, Nostrand M, Olson R E, Pak A, Park H A, Schneider M B, Shaw M, Smalyuk V A, Strozzi D J, Suratwala T, Suter L J, Tommasini R, Town R P J, Wonterghem B V, Wegner P, Widmann K, Widmayer C, Wilkens H, Williams E A, Edwards M J, Remington B A, MacGowan B J, Kikenny J D, Lindl J D, Atherton L J, Batha S H, Moses E 2013 Phys. Plasmas 20 056314
[11] Lan K, Liu J, Lai D X, Zheng W D, He X T 2014 Phys. Plasmas 21 010704
[12] Lan K, He X T, Liu J, Zheng W D, Lai D X 2014 Phys. Plasmas 21 052704
[13] Callahan D A, Amendt P, Dewald E L, Haan S W, Hinkel D E, Izurni N, Jones O S, Landen O L, Lindl J D, Pollaine S M, Suter L J, Tabak M, Turner R E 2006 Phys. Plasmas 13 056307
[14] Pei L C, Zhang X Z 1980 Monte Carlo Methods and Application in Particle Transportation (Beijing: Science Press) (in Chinese) [裴鹿成, 张孝泽 1980 蒙特卡罗方法及其在粒子输运问题中的应用 (北京:科学出版社)]
[15] Du S H, Zhang S F, Feng T G, Wang Y Z 1989 Computer Simulation of Transport Problems (Changsha: Hunan Science and Technology Press) (in Chinese) [杜书华, 张树发, 冯庭桂, 王元璋 1989 输运问题的计算机模拟(湖南科技出版社)]
[16] Li S, Li G, Tian D F, Deng L 2013 Acta Phys. Sin. 62 249501 (in Chinese) [李树, 李刚, 田东风, 邓力 2013 62 249501]
计量
- 文章访问数: 5941
- PDF下载量: 177
- 被引次数: 0