-
采用超声悬浮无容器处理技术,并结合高速摄影实时分析方法,研究了丁二腈-樟脑(SCN-DC)共晶型合金在不同声场条件下的液态过冷能力及其结晶过程.实验发现,SCN-10wt% DC亚共晶、SCN-23.6wt% DC共晶和SCN-40wt% DC过共晶合金熔体获得的最大过冷度分别达22.5(0.07TL)、16(0.05 TE)和32.5K (0.1TL),相应的晶体生长速度各为27.91、0.21和0.45mm/s.随着声压的增强,合金液滴的径厚比逐渐增大.其过冷度随径厚比的增大先升高,后逐渐降低,最后基本保持不变.强声场引起的表面形核率增加以及合金液滴振动是阻碍深过冷的主要因素.As an important and promising experimental method for simulating the containerless state in outer space, acoustic levitation provides excellent contact-free condition to investigate solidification process. Meanwhile, the radiation pressure and acoustic streaming caused by nonlinear effects bring various kinds of novel phenomena to crystallization kinetics. In this work, high-speed CCD, low-speed camera and infrared thermal imager were used simultaneously to observe the crystallization process of acoustically levitated SCN-DC transparent alloys. The undercooling ability and solidification process of alloy droplets with different aspect ratios were explored under acoustic levitation state. For hypoeutectic SCN-10wt%DC, eutectic SCN-23.6wt%DC and hypereutectic SCN-40wt%DC alloys, the experimental maximum undercoolings reached 22.5(0.07TL), 16(0.05TE) and 32.5K(0.1TL) respectively and the corresponding crystal growth velocities were 27.91, 0.21 and 0.45 mm/s. In SCN-10wt%DC hypoeutectic alloy, the nucleation mode of SCN dendrite changed from edge nucleation to random nucleation with the increase of undercooling. For SCN-23.6wt%DC eutectic alloy, when undercooling exceeded 12.6K, DC dendrite preferentially nucleated and grew, and then the (SCN+DC) eutectic grew attached to DC dendrite. Moreover, the growth interface of DC dendrite gradually changed from sharp to smooth within SCN-40wt%DC hypereutectic alloy as the undercooling degree rose. The undercooling distribution curve and nucleation probability variation trend were analyzed versus aspect ratio. It was found that as the aspect ratio increased, undercooling of alloy droplet increased firstly, then decreased, and finally remained almost unchanged. Further analysis showed that with the increase of aspect ratio, the cooling rate would rise and thus enhanced the undercooling. However, the increase in surface nucleation rate and the droplet oscillation inhibited deep undercooling of alloy droplet. Therefore, the coupled effects of cooling rate, surface nucleation rate and droplet oscillation determined the undercooling of the alloy. In the case of SCN-40wt%DC hypereutectic alloy, the acoustic streaming and surface oscillation arising from acoustic field were the principal factors intensifying surface nucleation.
-
Keywords:
- acoustic levitation /
- SCN-DC alloy /
- nucleation /
- crystal growth
-
[1] Foresti D, Nabavi M, Klingauf M, Ferrari A, Poulikakos D 2013Proc. Natl. Acad. Sci. U.S.A. 11012549
[2] Xie W J, Cao C D, Lü Y J, Wei B 2002Phys. Rev. Lett. 89 104304
[3] Doss M, Bänsch E 2022Chem. Eng. Sci. 248 117149
[4] Zehnter S, Andrade M A B, Ament C 2021J. Appl. Phys. 129 134901
[5] Qin X P, Geng D L, Hong Z Y, Wei B 2017Acta Phys. Sin. 66 124301(in Chinese) [秦修培,耿德路,洪振宇,魏炳波2017 66 124301]
[6] Vieira S L, Andrade M A B 2020J. Appl. Phys. 127 224901
[7] Andrade M A B, Bernassau A L, Adamowski J C 2016Appl. Phys. Lett. 109044101
[8] Nada B, Daniele F, Marko D, Majid N, Dimos P 2010Appl. Phys. Lett. 97161904
[9] Chen C, Zhang R Q, Li F, Li Z Y 2023Acta Phys. Sin. 72 124302(in Chinese) [陈聪,张若钦,李锋,李志远2023 72 124302]
[10] Wu B, Vansaders B, Lim M X, Jaeger H M 2023Proc. Natl. Acad. Sci. U.S.A. 120 e2301625120
[11] Hosseinzadeh V A, Holt R G 2017J. Appl. Phys. 121 174502
[12] Kremer J, Kilzer A, Petermann M 2018Rev. Sci. Instrum. 89 015109
[13] Brillo J, Pommrich A I, Meyer A 2011Phys. Rev. Lett. 107 165902
[14] Su Y, Mohr M, Wunderlich R K, Wang X D, Cao Q P, Zhang D X, Yang Y, Fecht H J, Jiang J Z 2020J. Mol. Liq. 298 111992
[15] Mark P, Taketoshi H, Minoru E, Ivan E 1995J. Crgst. 151 60
[16] Lü Y J, Wei B 2006J. Chem. Phys. 125 144503
[17] Andrade M A B, Marzo A, Adamowski J C 2020Appl. Phys. Lett. 116 250501
[18] Du R J, Xie W J 2011Acta Phys. Sin. 60 114302(in Chinese) [杜人君,解文军2011 60 114302]
[19] Wang Z, Wang F Z, Wang X, He Y H, Ma S, Wu Z 2014Acta Phys. Sin. 63076101(in Chinese) [王哲,王发展,王欣,何银花,马姗,吴振2014 63 076101]
[20] Lü Y J, Xie W J, Wei B 2005Appl. Phys. Lett. 87 184107
[21] Mauro N A, Vogt A J, Johnson M L, Bendert J C, Kelton K F 2013Appl. Phys. Lett. 103 021904
[22] Mauro N A, Vogt A J, Johnson M L, Bendert J C, Soklaski R, Yang L, Kelton K F 2013Acta Mater. 61 19
[23] Wolfgang R, Joseph P, Allen C, Daniel D 2023J. Acoust. Soc. Am. 154 2
[24] Loops J H, Lima E B, Leão-Neto J P, Silva G T 2020Phys. Rev. E 101 043102
[25] O’Connell R A, Sharratt W N, Cabral J T 2023Phys. Rev. Lett. 131 218101
[26] Zsolt V, Arnold R, Jenő K, András R 2019J. Crgst. 506 127
[27] Rodriguez J E, Kreischer C, Volkmann T, Matson D M 2017Acta Mater. 122 431
[28] Ohsaka K, Trinh E H 1990J. Crgst. 106 191
[29] Witusiewicz V T, Hecht U, Rex S 2013J. Crgst. 375 84
[30] Lee C P, Wang T G 1993 J. Acoust. Soc. Am. 94 1099
[31] Xie W J, Wei B 2002J. Appl. Phys. 93 3016
计量
- 文章访问数: 143
- PDF下载量: 4
- 被引次数: 0