搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声悬浮条件下液态SCN-DC透明合金的形核规律与晶体生长

朱光耀 耿德路 侯念嗣 王时宇 魏炳波

引用本文:
Citation:

超声悬浮条件下液态SCN-DC透明合金的形核规律与晶体生长

朱光耀, 耿德路, 侯念嗣, 王时宇, 魏炳波
cstr: 32037.14.aps.74.20241747

Crystal nucleation and growth kinetics of acoustically levitated liquid SCN-DC transparent alloys

ZHU Guangyao, GENG Delu, HOU Niansi, WANG Shiyu, WEI Bingbo
cstr: 32037.14.aps.74.20241747
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 采用超声悬浮无容器处理技术, 并结合高速摄影实时分析方法, 研究了丁二腈-樟脑(SCN-DC)共晶型合金在不同声场条件下的液态过冷能力及其结晶过程. 实验发现, SCN-10%DC亚共晶、SCN-23.6%DC共晶和SCN-40%DC过共晶合金熔体获得的最大过冷度分别达22.5 K (0.07TL), 16 K (0.05TE)和32.5 K (0.1TL), 相应的晶体生长速度各为27.91, 0.21和0.45 mm/s. 随着声压的增强, 合金液滴的径厚比逐渐增大. 其过冷度随径厚比的增大先升高后逐渐降低, 最后基本保持不变. 强声场引起的表面形核率增加以及合金液滴振动是阻碍深过冷的主要因素.
    As an important and promising experimental method of simulating the containerless state in outer space, acoustic levitation provides excellent contact-free condition for investigating solidification process. Meanwhile, the radiation pressure and acoustic streaming caused by nonlinear effects bring various kinds of novel phenomena to crystallization kinetics. In this work, high-speed charge coupled device (CCD), low-speed camera and infrared thermal imager are used simultaneously to observe the crystallization process of acoustically levitated SCN-DC transparent alloys. The undercooling ability and solidification process of alloy droplets with different aspect ratios are explored in acoustic levitation state. For hypoeutectic SCN-10%DC, eutectic SCN-23.6%DC and hypereutectic SCN-40%DC alloys, the experimental maximum undercoolings reach 22.5 K (0.07TL), 16 K (0.05TE) and 32.5 K (0.1TL) and the corresponding crystal growth velocities are 27.91, 0.21 and 0.45 mm/s, respectively. In SCN-10%DC hypoeutectic alloy, the nucleation mode of SCN dendrite changes from edge nucleation into random nucleation with the increase of undercooling. For SCN-23.6%DC eutectic alloy, when the undercooling exceeds 12.6 K, DC dendrites preferentially nucleate and grow, and then the (SCN+DC) eutectic adheres to and grows on DC dendrites. Moreover, the growth interface of DC dendrites gradually changes from sharp into smooth within SCN-40%DC hypereutectic alloy as the undercooling degree rises. The undercooling distribution curve and nucleation probability variation trend versus aspect ratio are analyzed. It is found that as the aspect ratio increases, undercooling of alloy droplet first increases, then decreases, and finally remains almost unchanged. Further analysis shows that with the increase of aspect ratio, the cooling rate will rise and thus enhance the undercooling. However, the increase in surface nucleation rate and the droplet oscillation inhibits deep undercooling of alloy droplet. Therefore, the coupled effects of cooling rate, surface nucleation rate, and droplet oscillation determine the undercooling of the alloy. In the case of SCN-40% DC hypereutectic alloy, the acoustic streaming and surface oscillation arising from acoustic field are the main factors intensifying surface nucleation.
      通信作者: 魏炳波, bbwei@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52088101, 51871182, 52174378)资助的课题.
      Corresponding author: WEI Bingbo, bbwei@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52088101, 51871182, 52174378).
    [1]

    Foresti D, Nabavi M, Klingauf M, Ferrari A, Poulikakos D 2013 Proc. Natl. Acad. Sci. U. S. A. 110 12549Google Scholar

    [2]

    Xie W J, Cao C D, Lü Y J, Wei B 2002 Phys. Rev. Lett. 89 104304Google Scholar

    [3]

    Doss M, Bänsch E 2022 Chem. Eng. Sci. 248 117149Google Scholar

    [4]

    Zehnter S, Andrade M A B, Ament C 2021 J. Appl. Phys. 129 134901Google Scholar

    [5]

    秦修培, 耿德路, 洪振宇, 魏炳波 2017 66 124301Google Scholar

    Qin X P, Geng D L, Hong Z Y, Wei B B 2017 Acta Phys. Sin. 66 124301Google Scholar

    [6]

    Vieira S L, Andrade M A B 2020 J. Appl. Phys. 127 224901Google Scholar

    [7]

    Andrade M A B, Bernassau A L, Adamowski J C 2016 Appl. Phys. Lett. 109 044101Google Scholar

    [8]

    Nada B, Daniele F, Marko D, Majid N, Dimos P 2010 Appl. Phys. Lett. 97 161904Google Scholar

    [9]

    陈聪, 张若钦, 李锋, 李志远 2023 72 124302Google Scholar

    Chen C, Zhang R Q, Li F, Li Z Y 2023 Acta Phys. Sin. 72 124302Google Scholar

    [10]

    Wu B, Vansaders B, Lim M X, Jaeger H M 2023 Proc. Natl. Acad. Sci. U. S. A. 120 e2301625120Google Scholar

    [11]

    Hosseinzadeh V A, Holt R G 2017 J. Appl. Phys. 121 174502Google Scholar

    [12]

    Kremer J, Kilzer A, Petermann M 2018 Rev. Sci. Instrum. 89 015109Google Scholar

    [13]

    Brillo J, Pommrich A I, Meyer A 2011 Phys. Rev. Lett. 107 165902Google Scholar

    [14]

    Su Y, Mohr M, Wunderlich R K, Wang X D, Cao Q P, Zhang D X, Yang Y, Fecht H J, Jiang J Z 2020 J. Mol. Liq. 298 111992Google Scholar

    [15]

    Mark P, Taketoshi H, Minoru E, Ivan E 1995 J. Cryst. 151 60Google Scholar

    [16]

    Lü Y J, Wei B 2006 J. Chem. Phys. 125 144503Google Scholar

    [17]

    Andrade M A B, Marzo A, Adamowski J C 2020 Appl. Phys. Lett. 116 250501Google Scholar

    [18]

    杜人君, 解文军 2011 60 114302Google Scholar

    Du R J, Xie W J 2011 Acta Phys. Sin. 60 114302Google Scholar

    [19]

    王哲, 王发展, 王欣, 何银花, 马姗, 吴振 2014 63 076101Google Scholar

    Wang Z, Wang F Z, Wang X, He Y H, Ma S, Wu Z 2014 Acta Phys. Sin. 63 076101Google Scholar

    [20]

    Lü Y J, Xie W J, Wei B 2005 Appl. Phys. Lett. 87 184107Google Scholar

    [21]

    Mauro N A, Vogt A J, Johnson M L, Bendert J C, Kelton K F 2013 Appl. Phys. Lett. 103 021904Google Scholar

    [22]

    Mauro N A, Vogt A J, Johnson M L, Bendert J C, Soklaski R, Yang L, Kelton K F 2013 Acta Mater. 61 7411Google Scholar

    [23]

    Wolfgang R, Joseph P, Allen C, Daniel D 2023 J. Acoust. Soc. Am. 154 1339Google Scholar

    [24]

    Loops J H, Lima E B, Leão-Neto J P, Silva G T 2020 Phys. Rev. E 101 043102Google Scholar

    [25]

    O’Connell R A, Sharratt W N, Cabral J T 2023 Phys. Rev. Lett. 131 218101Google Scholar

    [26]

    Zsolt V, Arnold R, Jenő K, András R 2019 J. Cryst. 506 127Google Scholar

    [27]

    Rodriguez J E, Kreischer C, Volkmann T, Matson D M 2017 Acta Mater. 122 431Google Scholar

    [28]

    Ohsaka K, Trinh E H 1990 J. Cryst. 106 191Google Scholar

    [29]

    Witusiewicz V T, Hecht U, Rex S 2013 J. Cryst. 375 84Google Scholar

    [30]

    Lee C P, Wang T G 1993 J. Acoust. Soc. Am. 94 1099Google Scholar

    [31]

    Xie W J, Wei B 2003 J. Appl. Phys. 93 3016Google Scholar

  • 图 1  三种不同成分液态SCN-DC合金达到的过冷度

    Fig. 1.  Maximum undercoolings achieved by three liquid SCN-DC alloys.

    图 2  超声悬浮条件下合金液滴的过冷与凝固 (a) 实验装置示意图; (b) SCN-DC合金的冷却曲线

    Fig. 2.  Undercooling and solidification of acoustically levitated alloy: (a) Schematic diagram of experimental setup; (b) cooling curves of SCN-DC alloys.

    图 3  超声悬浮条件下合金熔体的形状与受力情况 (a) 液滴上下表面受到的声辐射压; (b) 声压与液滴形状的关系

    Fig. 3.  Aoustic pressure distribution of levitated droplet: (a) Acoustic radiation pressure on surface; (b) acoustic pressure versus droplet aspect ratio.

    图 4  合金液滴过冷度随变形程度的变化关系 (a) SCN-10%DC亚共晶; (b) SCN-23.6%DC共晶; (c) SCN-40%DC过共晶

    Fig. 4.  Relationship between undercooling and aspect ratio of alloy melt: (a) SCN-10%DC hypoeutectic; (b) SCN-23.6%DC eutectic; (c) SCN-40%DC hypereutectic.

    图 5  超声悬浮条件下不同变形程度合金液滴形核规律 (a) 冷却速率; (b) 形核孕育时间

    Fig. 5.  The nucleation characteristics of various deformed alloy melt: (a) Cooling rates; (b) nucleation gestation time.

    图 6  SCN-40%DC过共晶合金形核概率与过冷度的关系 (a) γ = 2.3; (b) γ = 3.2; (c) γ = 4.1

    Fig. 6.  Relationship between undercooling and nucleation probability within hypereutectic SCN-40%DC alloy: (a) γ = 2.3; (b) γ = 3.2; (c) γ = 4.1.

    图 7  合金液滴温度场与流场分布 (a) 液滴红外热像仪照片; (b) 合金液滴纵截面沿x方向上的温度分布; (c)合金熔体内外部流场

    Fig. 7.  Temperature and flow field of alloy: (a) Infrared thermography of alloy droplet; (b) temperature distribution of liquid alloy in x orientation on the longitudinal section; (c) internal and external flow field of alloy.

    图 8  SCN-DC合金液滴凝固过程 (a) SCN-10%DC亚共晶; (b) SCN-23.6%DC共晶; (c) SCN-40%DC过共晶

    Fig. 8.  Solidification process of SCN-DC alloy melt: (a) SCN-10%DC hypoeutectic; (b) SCN-23.6%DC eutectic; (c) SCN-40%DC hypereutectic.

    图 9  枝晶和共晶生长速度与过冷度的关系 (a) SCN枝晶; (b) (SCN+DC)共晶; (c) DC枝晶

    Fig. 9.  Dendritic and eutectic growth velocities versus undercooling: (a) SCN dendritic; (b) (SCN+DC) binary eutectic; (c) DC dendritic.

    表 1  声场计算所需物理参数

    Table 1.  Physical parameters used for calculation

    参数 单位 数值
    超声频率 f kHz 22
    发射端振幅 A μm 15
    等效半径 $ {{R}}_{\text{s}} $ mm 4.15
    重力加速度 g m/s2 9.8
    介质密度 $ {\rho }_{0} $ kg/m3 1.29
    介质黏度 $ {\eta}_{0} $ $ {10}^{-5}\text{ }\text{Pa∙s} $ 1.81
    声速 $ {{c}}_{0} $ m/s 340
    合金密度 $ {\rho }_{\text{s}} $ 103 kg/m3 1.02
    合金表面张力 $ \sigma $ $ {10}^{-2}\text{\;}\text{N/m} $ 3.75
    合金黏度 $ {\eta}_{\text{L}} $ $ {10}^{-3}\text{\;}\text{Pa∙s} $ 3.22
    温度T K 293
    下载: 导出CSV
    Baidu
  • [1]

    Foresti D, Nabavi M, Klingauf M, Ferrari A, Poulikakos D 2013 Proc. Natl. Acad. Sci. U. S. A. 110 12549Google Scholar

    [2]

    Xie W J, Cao C D, Lü Y J, Wei B 2002 Phys. Rev. Lett. 89 104304Google Scholar

    [3]

    Doss M, Bänsch E 2022 Chem. Eng. Sci. 248 117149Google Scholar

    [4]

    Zehnter S, Andrade M A B, Ament C 2021 J. Appl. Phys. 129 134901Google Scholar

    [5]

    秦修培, 耿德路, 洪振宇, 魏炳波 2017 66 124301Google Scholar

    Qin X P, Geng D L, Hong Z Y, Wei B B 2017 Acta Phys. Sin. 66 124301Google Scholar

    [6]

    Vieira S L, Andrade M A B 2020 J. Appl. Phys. 127 224901Google Scholar

    [7]

    Andrade M A B, Bernassau A L, Adamowski J C 2016 Appl. Phys. Lett. 109 044101Google Scholar

    [8]

    Nada B, Daniele F, Marko D, Majid N, Dimos P 2010 Appl. Phys. Lett. 97 161904Google Scholar

    [9]

    陈聪, 张若钦, 李锋, 李志远 2023 72 124302Google Scholar

    Chen C, Zhang R Q, Li F, Li Z Y 2023 Acta Phys. Sin. 72 124302Google Scholar

    [10]

    Wu B, Vansaders B, Lim M X, Jaeger H M 2023 Proc. Natl. Acad. Sci. U. S. A. 120 e2301625120Google Scholar

    [11]

    Hosseinzadeh V A, Holt R G 2017 J. Appl. Phys. 121 174502Google Scholar

    [12]

    Kremer J, Kilzer A, Petermann M 2018 Rev. Sci. Instrum. 89 015109Google Scholar

    [13]

    Brillo J, Pommrich A I, Meyer A 2011 Phys. Rev. Lett. 107 165902Google Scholar

    [14]

    Su Y, Mohr M, Wunderlich R K, Wang X D, Cao Q P, Zhang D X, Yang Y, Fecht H J, Jiang J Z 2020 J. Mol. Liq. 298 111992Google Scholar

    [15]

    Mark P, Taketoshi H, Minoru E, Ivan E 1995 J. Cryst. 151 60Google Scholar

    [16]

    Lü Y J, Wei B 2006 J. Chem. Phys. 125 144503Google Scholar

    [17]

    Andrade M A B, Marzo A, Adamowski J C 2020 Appl. Phys. Lett. 116 250501Google Scholar

    [18]

    杜人君, 解文军 2011 60 114302Google Scholar

    Du R J, Xie W J 2011 Acta Phys. Sin. 60 114302Google Scholar

    [19]

    王哲, 王发展, 王欣, 何银花, 马姗, 吴振 2014 63 076101Google Scholar

    Wang Z, Wang F Z, Wang X, He Y H, Ma S, Wu Z 2014 Acta Phys. Sin. 63 076101Google Scholar

    [20]

    Lü Y J, Xie W J, Wei B 2005 Appl. Phys. Lett. 87 184107Google Scholar

    [21]

    Mauro N A, Vogt A J, Johnson M L, Bendert J C, Kelton K F 2013 Appl. Phys. Lett. 103 021904Google Scholar

    [22]

    Mauro N A, Vogt A J, Johnson M L, Bendert J C, Soklaski R, Yang L, Kelton K F 2013 Acta Mater. 61 7411Google Scholar

    [23]

    Wolfgang R, Joseph P, Allen C, Daniel D 2023 J. Acoust. Soc. Am. 154 1339Google Scholar

    [24]

    Loops J H, Lima E B, Leão-Neto J P, Silva G T 2020 Phys. Rev. E 101 043102Google Scholar

    [25]

    O’Connell R A, Sharratt W N, Cabral J T 2023 Phys. Rev. Lett. 131 218101Google Scholar

    [26]

    Zsolt V, Arnold R, Jenő K, András R 2019 J. Cryst. 506 127Google Scholar

    [27]

    Rodriguez J E, Kreischer C, Volkmann T, Matson D M 2017 Acta Mater. 122 431Google Scholar

    [28]

    Ohsaka K, Trinh E H 1990 J. Cryst. 106 191Google Scholar

    [29]

    Witusiewicz V T, Hecht U, Rex S 2013 J. Cryst. 375 84Google Scholar

    [30]

    Lee C P, Wang T G 1993 J. Acoust. Soc. Am. 94 1099Google Scholar

    [31]

    Xie W J, Wei B 2003 J. Appl. Phys. 93 3016Google Scholar

计量
  • 文章访问数:  2692
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-19
  • 修回日期:  2025-01-09
  • 上网日期:  2025-02-09
  • 刊出日期:  2025-04-05

/

返回文章
返回
Baidu
map