搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声悬浮条件下液态SCN-DC透明合金的形核规律与晶体生长研究

朱光耀 耿德路 侯念嗣 王时宇 魏炳波

引用本文:
Citation:

超声悬浮条件下液态SCN-DC透明合金的形核规律与晶体生长研究

朱光耀, 耿德路, 侯念嗣, 王时宇, 魏炳波

Crystal nucleation and growth kinetics of acoustically levitated liquid SCN-DC transparent alloys

ZHU Guangyao, GENG Delu, HOU Niansi, WANG Shiyu, WEI Bingbo
PDF
导出引用
  • 采用超声悬浮无容器处理技术,并结合高速摄影实时分析方法,研究了丁二腈-樟脑(SCN-DC)共晶型合金在不同声场条件下的液态过冷能力及其结晶过程.实验发现,SCN-10wt% DC亚共晶、SCN-23.6wt% DC共晶和SCN-40wt% DC过共晶合金熔体获得的最大过冷度分别达22.5(0.07TL)、16(0.05 TE)和32.5K (0.1TL),相应的晶体生长速度各为27.91、0.21和0.45mm/s.随着声压的增强,合金液滴的径厚比逐渐增大.其过冷度随径厚比的增大先升高,后逐渐降低,最后基本保持不变.强声场引起的表面形核率增加以及合金液滴振动是阻碍深过冷的主要因素.
    As an important and promising experimental method for simulating the containerless state in outer space, acoustic levitation provides excellent contact-free condition to investigate solidification process. Meanwhile, the radiation pressure and acoustic streaming caused by nonlinear effects bring various kinds of novel phenomena to crystallization kinetics. In this work, high-speed CCD, low-speed camera and infrared thermal imager were used simultaneously to observe the crystallization process of acoustically levitated SCN-DC transparent alloys. The undercooling ability and solidification process of alloy droplets with different aspect ratios were explored under acoustic levitation state. For hypoeutectic SCN-10wt%DC, eutectic SCN-23.6wt%DC and hypereutectic SCN-40wt%DC alloys, the experimental maximum undercoolings reached 22.5(0.07TL), 16(0.05TE) and 32.5K(0.1TL) respectively and the corresponding crystal growth velocities were 27.91, 0.21 and 0.45 mm/s. In SCN-10wt%DC hypoeutectic alloy, the nucleation mode of SCN dendrite changed from edge nucleation to random nucleation with the increase of undercooling. For SCN-23.6wt%DC eutectic alloy, when undercooling exceeded 12.6K, DC dendrite preferentially nucleated and grew, and then the (SCN+DC) eutectic grew attached to DC dendrite. Moreover, the growth interface of DC dendrite gradually changed from sharp to smooth within SCN-40wt%DC hypereutectic alloy as the undercooling degree rose. The undercooling distribution curve and nucleation probability variation trend were analyzed versus aspect ratio. It was found that as the aspect ratio increased, undercooling of alloy droplet increased firstly, then decreased, and finally remained almost unchanged. Further analysis showed that with the increase of aspect ratio, the cooling rate would rise and thus enhanced the undercooling. However, the increase in surface nucleation rate and the droplet oscillation inhibited deep undercooling of alloy droplet. Therefore, the coupled effects of cooling rate, surface nucleation rate and droplet oscillation determined the undercooling of the alloy. In the case of SCN-40wt%DC hypereutectic alloy, the acoustic streaming and surface oscillation arising from acoustic field were the principal factors intensifying surface nucleation.
  • [1]

    Foresti D, Nabavi M, Klingauf M, Ferrari A, Poulikakos D 2013Proc. Natl. Acad. Sci. U.S.A. 11012549

    [2]

    Xie W J, Cao C D, Lü Y J, Wei B 2002Phys. Rev. Lett. 89 104304

    [3]

    Doss M, Bänsch E 2022Chem. Eng. Sci. 248 117149

    [4]

    Zehnter S, Andrade M A B, Ament C 2021J. Appl. Phys. 129 134901

    [5]

    Qin X P, Geng D L, Hong Z Y, Wei B 2017Acta Phys. Sin. 66 124301(in Chinese) [秦修培,耿德路,洪振宇,魏炳波2017 66 124301]

    [6]

    Vieira S L, Andrade M A B 2020J. Appl. Phys. 127 224901

    [7]

    Andrade M A B, Bernassau A L, Adamowski J C 2016Appl. Phys. Lett. 109044101

    [8]

    Nada B, Daniele F, Marko D, Majid N, Dimos P 2010Appl. Phys. Lett. 97161904

    [9]

    Chen C, Zhang R Q, Li F, Li Z Y 2023Acta Phys. Sin. 72 124302(in Chinese) [陈聪,张若钦,李锋,李志远2023 72 124302]

    [10]

    Wu B, Vansaders B, Lim M X, Jaeger H M 2023Proc. Natl. Acad. Sci. U.S.A. 120 e2301625120

    [11]

    Hosseinzadeh V A, Holt R G 2017J. Appl. Phys. 121 174502

    [12]

    Kremer J, Kilzer A, Petermann M 2018Rev. Sci. Instrum. 89 015109

    [13]

    Brillo J, Pommrich A I, Meyer A 2011Phys. Rev. Lett. 107 165902

    [14]

    Su Y, Mohr M, Wunderlich R K, Wang X D, Cao Q P, Zhang D X, Yang Y, Fecht H J, Jiang J Z 2020J. Mol. Liq. 298 111992

    [15]

    Mark P, Taketoshi H, Minoru E, Ivan E 1995J. Crgst. 151 60

    [16]

    Lü Y J, Wei B 2006J. Chem. Phys. 125 144503

    [17]

    Andrade M A B, Marzo A, Adamowski J C 2020Appl. Phys. Lett. 116 250501

    [18]

    Du R J, Xie W J 2011Acta Phys. Sin. 60 114302(in Chinese) [杜人君,解文军2011 60 114302]

    [19]

    Wang Z, Wang F Z, Wang X, He Y H, Ma S, Wu Z 2014Acta Phys. Sin. 63076101(in Chinese) [王哲,王发展,王欣,何银花,马姗,吴振2014 63 076101]

    [20]

    Lü Y J, Xie W J, Wei B 2005Appl. Phys. Lett. 87 184107

    [21]

    Mauro N A, Vogt A J, Johnson M L, Bendert J C, Kelton K F 2013Appl. Phys. Lett. 103 021904

    [22]

    Mauro N A, Vogt A J, Johnson M L, Bendert J C, Soklaski R, Yang L, Kelton K F 2013Acta Mater. 61 19

    [23]

    Wolfgang R, Joseph P, Allen C, Daniel D 2023J. Acoust. Soc. Am. 154 2

    [24]

    Loops J H, Lima E B, Leão-Neto J P, Silva G T 2020Phys. Rev. E 101 043102

    [25]

    O’Connell R A, Sharratt W N, Cabral J T 2023Phys. Rev. Lett. 131 218101

    [26]

    Zsolt V, Arnold R, Jenő K, András R 2019J. Crgst. 506 127

    [27]

    Rodriguez J E, Kreischer C, Volkmann T, Matson D M 2017Acta Mater. 122 431

    [28]

    Ohsaka K, Trinh E H 1990J. Crgst. 106 191

    [29]

    Witusiewicz V T, Hecht U, Rex S 2013J. Crgst. 375 84

    [30]

    Lee C P, Wang T G 1993 J. Acoust. Soc. Am. 94 1099

    [31]

    Xie W J, Wei B 2002J. Appl. Phys. 93 3016

  • [1] 孙贵花, 张庆礼, 罗建乔, 王小飞, 谷长江. Pr, Yb, Ho:GdScO3晶体生长及光谱性能.  , doi: 10.7498/aps.73.20231362
    [2] 贺华丹, 钟琦超, 解文军. 声悬浮条件下双水相液滴的蒸发与相分离.  , doi: 10.7498/aps.73.20230963
    [3] 王欢, 何春娟, 徐升, 王义炎, 曾祥雨, 林浚发, 王小艳, 巩静, 马小平, 韩坤, 王乙婷, 夏天龙. 拓扑半金属及磁性拓扑材料的单晶生长.  , doi: 10.7498/aps.72.20221574
    [4] 孙贵花, 张庆礼, 罗建乔, 王小飞, 谷长江. Pr,Yb,Ho:GdScO3晶体生长及光谱性能研究.  , doi: 10.7498/aps.72.20231362
    [5] 孙贵花, 张庆礼, 罗建乔, 孙敦陆, 谷长江, 郑丽丽, 韩松, 李为民. Ti:MgAl2O4激光晶体的提拉法生长及性能表征.  , doi: 10.7498/aps.69.20191150
    [6] 张妮, 刘丁, 冯雪亮. 直拉硅单晶生长过程中工艺参数对相变界面形态的影响.  , doi: 10.7498/aps.67.20180305
    [7] 郭灿, 王锦程, 王志军, 李俊杰, 郭耀麟, 唐赛. BCC枝晶生长原子堆垛过程的晶体相场研究.  , doi: 10.7498/aps.64.028102
    [8] 黄伟超, 刘丁, 焦尚彬, 张妮. 直拉法晶体生长过程非稳态流体热流耦合.  , doi: 10.7498/aps.64.208102
    [9] 解文军, 滕鹏飞. 声悬浮过程的格子Boltzmann方法研究.  , doi: 10.7498/aps.63.164301
    [10] 周鹏宇, 张庆礼, 杨华军, 宁凯杰, 孙敦陆, 罗建乔, 殷绍唐. 5 at%Yb3+: YNbO4 的提拉法晶体生长和光谱特性.  , doi: 10.7498/aps.61.228103
    [11] 邵学鹏, 解文军. 声悬浮条件下黏性液滴的扇谐振荡规律研究.  , doi: 10.7498/aps.61.134302
    [12] 鄢振麟, 解文军, 沈昌乐, 魏炳波. 声悬浮液滴的表面毛细波及八阶扇谐振荡.  , doi: 10.7498/aps.60.064302
    [13] 杜人君, 解文军. 声悬浮条件下环己烷液滴的蒸发凝固.  , doi: 10.7498/aps.60.114302
    [14] 邢辉, 陈长乐, 金克新, 谭兴毅, 范飞. 相场晶体法模拟过冷熔体中的晶体生长.  , doi: 10.7498/aps.59.8218
    [15] 牛睿祺, 董慧茹, 王云平. 非线性光学晶体4-(4-二甲基氨基苯乙烯基)甲基吡啶对甲基苯磺酸盐的制备与性能研究.  , doi: 10.7498/aps.56.4235
    [16] 王英伟, 王自东, 程灏波. 新型激光晶体Yb:KY(WO4)2的结构与光谱.  , doi: 10.7498/aps.55.4803
    [17] 刘向荣, 王 楠, 魏炳波. 无容器条件下Cu-Pb偏晶的快速生长.  , doi: 10.7498/aps.54.1671
    [18] 徐锦锋, 魏炳波. 快速凝固Co-Cu包晶合金的电学性能.  , doi: 10.7498/aps.54.3444
    [19] 张 琳, 李恩普, 冯 伟, 洪振宇, 解文军, 马仰华. 声悬浮过程的激光全息干涉研究.  , doi: 10.7498/aps.54.2038
    [20] 徐锦锋, 魏炳波. 急冷快速凝固过程中液相流动与组织形成的相关规律.  , doi: 10.7498/aps.53.1909
计量
  • 文章访问数:  143
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-09

/

返回文章
返回
Baidu
map