搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声悬浮条件下液态SCN-DC透明合金的形核规律与晶体生长

朱光耀 耿德路 侯念嗣 王时宇 魏炳波

引用本文:
Citation:

超声悬浮条件下液态SCN-DC透明合金的形核规律与晶体生长

朱光耀, 耿德路, 侯念嗣, 王时宇, 魏炳波

Crystal nucleation and growth kinetics of acoustically levitated liquid SCN-DC transparent alloys

ZHU Guangyao, GENG Delu, HOU Niansi, WANG Shiyu, WEI Bingbo
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 采用超声悬浮无容器处理技术, 并结合高速摄影实时分析方法, 研究了丁二腈-樟脑(SCN-DC)共晶型合金在不同声场条件下的液态过冷能力及其结晶过程. 实验发现, SCN-10%DC亚共晶、SCN-23.6%DC共晶和SCN-40%DC过共晶合金熔体获得的最大过冷度分别达22.5 K (0.07TL), 16 K (0.05TE)和32.5 K (0.1TL), 相应的晶体生长速度各为27.91, 0.21和0.45 mm/s. 随着声压的增强, 合金液滴的径厚比逐渐增大. 其过冷度随径厚比的增大先升高, 后逐渐降低, 最后基本保持不变. 强声场引起的表面形核率增加以及合金液滴振动是阻碍深过冷的主要因素.
    As an important and promising experimental method of simulating the containerless state in outer space, acoustic levitation provides excellent contact-free condition for investigating solidification process. Meanwhile, the radiation pressure and acoustic streaming caused by nonlinear effects bring various kinds of novel phenomena to crystallization kinetics. In this work, high-speed charge coupled device (CCD), low-speed camera and infrared thermal imager are used simultaneously to observe the crystallization process of acoustically levitated SCN-DC transparent alloys. The undercooling ability and solidification process of alloy droplets with different aspect ratios are explored in acoustic levitation state. For hypoeutectic SCN-10%DC, eutectic SCN-23.6%DC and hypereutectic SCN-40%DC alloys, the experimental maximum undercoolings reach 22.5 K (0.07TL), 16 K (0.05TE) and 32.5 K (0.1TL) and the corresponding crystal growth velocities are 27.91, 0.21 and 0.45 mm/s, respectively. In SCN-10%DC hypoeutectic alloy, the nucleation mode of SCN dendrite changes from edge nucleation into random nucleation with the increase of undercooling. For SCN-23.6%DC eutectic alloy, when the undercooling exceeds 12.6 K, DC dendrites preferentially nucleate and grow, and then the (SCN+DC) eutecticadheres to and grows on DC dendrites. Moreover, the growth interface of DC dendrites gradually changes from sharp into smooth within SCN-40%DC hypereutectic alloy as the undercooling degree rises. The undercooling distribution curve and nucleation probability variation trend versus aspect ratio are analyzed. It is found that as the aspect ratio increases, undercooling of alloy droplet first increases, then decreases, and finally remains almost unchanged. Further analysis shows that with the increase of aspect ratio, the cooling rate will rise and thus enhance the undercooling. However, the increase in surface nucleation rate and the droplet oscillation inhibits deep undercooling of alloy droplet. Therefore, the coupled effects of cooling rate, surface nucleation rate, and droplet oscillation determine the undercooling of the alloy. In the case of SCN-40% DC hypereutectic alloy, the acoustic streaming and surface oscillation arising from acoustic field are the main factors intensifying surface nucleation.
  • 图 1  三种不同成分液态SCN-DC合金达到的过冷度

    Fig. 1.  Maximum undercoolings achieved by three liquid SCN-DC alloys.

    图 2  超声悬浮条件下合金液滴的过冷与凝固 (a) 实验装置示意图; (b) SCN-DC合金的冷却曲线

    Fig. 2.  Undercooling and solidification of acoustically levitated alloy: (a) Schematic diagram of experimental setup; (b) cooling curves of SCN-DC alloys.

    图 3  超声悬浮条件下合金熔体的形状与受力情况 (a) 液滴上下表面受到的声辐射压; (b) 声压与液滴形状的关系

    Fig. 3.  The acoustic pressure distribution of levitated droplet: (a) Acoustic radiation pressure on surface; (b) acoustic pressure versus droplet aspect ratio.

    图 4  合金液滴过冷度随变形程度的变化关系(a) SCN-10%DC亚共晶; (b) SCN-23.6%DC共晶; (c) SCN-40%DC过共晶

    Fig. 4.  Relationship between undercooling and aspect ratio of alloy melt: (a) SCN-10%DC hypoeutectic; (b) SCN-23.6%DC eutectic; (c) SCN-40%DC hypereutectic.

    图 5  超声悬浮条件下不同变形程度合金液滴形核规律 (a) 冷却速率; (b) 形核孕育时间

    Fig. 5.  The nucleation characteristics of various deformed alloy melt: (a) Cooling rates; (b) nucleation gestation time.

    图 6  SCN-40%DC过共晶合金形核概率与过冷度的关系 (a) γ = 2.3; (b) γ = 3.2; (c) γ = 4.1

    Fig. 6.  Relationship between undercooling and nucleation probability within hypereutectic SCN-40%DC alloy: (a) γ = 2.3; (b) γ = 3.2; (c) γ = 4.1.

    图 7  合金液滴温度场与流场分布 (a) 液滴红外热像仪照片; (b) 合金液滴纵截面沿x方向上的温度分布; (c)合金熔体内外部流场

    Fig. 7.  Temperature and flow field of alloy: (a) Infrared thermography of alloy droplet; (b) temperature distribution of liquid alloy in x orientation on the longitudinal section; (c) internal and external flow field of alloy.

    图 8  SCN-DC合金液滴凝固过程 (a) SCN-10%DC亚共晶; (b) SCN-23.6%DC共晶; (c) SCN-40%DC过共晶

    Fig. 8.  Solidification process of SCN-DC alloy melt: (a) SCN-10%DC hypoeutectic; (b) SCN-23.6%DC eutectic; (c) SCN-40%DC hypereutectic.

    图 9  枝晶和共晶生长速度与过冷度的关系 (a) SCN枝晶; (b) (SCN+DC)共晶; (c) DC枝晶

    Fig. 9.  Dendritic and eutectic growth velocities versus undercooling: (a) SCN dendritic; (b) (SCN+DC) binary eutectic; (c) DC dendritic.

    表 1  声场计算所需物理参数

    Table 1.  Physical parameters used for calculation

    参数 单位 数值
    超声频率 f kHz 22
    发射端振幅 A μm 15
    等效半径 $ {{R}}_{\text{s}} $ $ \text{mm} $ 4.15
    重力加速度 g $ \text{m/}{\text{s}}^{2} $ 9.8
    介质密度 $ {\rho }_{0} $ $ \text{kg/}{\text{m}}^{3} $ 1.29
    介质黏度 $ {\eta}_{0} $ $ {10}^{-5}\text{}\text{Pa∙s} $ 1.81
    声速 $ {{c}}_{0} $ $ \text{m/s} $ 340
    合金密度 $ {\rho }_{\text{s}} $ $ {10}^{3}\text{kg/}{\text{m}}^{3} $ 1.02
    合金表面张力 $ \sigma $ $ {10}^{-2}\text{}\text{N/m} $ 3.75
    合金黏度 $ {\eta}_{\text{L}} $ $ {10}^{-3}\text{}\text{Pa∙s} $ 3.22
    温度T K 293
    下载: 导出CSV
    Baidu
  • [1]

    Foresti D, Nabavi M, Klingauf M, Ferrari A, Poulikakos D 2013 Proc. Natl. Acad. Sci. U. S. A. 110 12549Google Scholar

    [2]

    Xie W J, Cao C D, Lü Y J, Wei B 2002 Phys. Rev. Lett. 89 104304Google Scholar

    [3]

    Doss M, Bänsch E 2022 Chem. Eng. Sci. 248 117149Google Scholar

    [4]

    Zehnter S, Andrade M A B, Ament C 2021 J. Appl. Phys. 129 134901Google Scholar

    [5]

    秦修培, 耿德路, 洪振宇, 魏炳波 2017 66 124301Google Scholar

    Qin X P, Geng D L, Hong Z Y, Wei B B 2017 Acta Phys. Sin. 66 124301Google Scholar

    [6]

    Vieira S L, Andrade M A B 2020 J. Appl. Phys. 127 224901Google Scholar

    [7]

    Andrade M A B, Bernassau A L, Adamowski J C 2016 Appl. Phys. Lett. 109 044101Google Scholar

    [8]

    Nada B, Daniele F, Marko D, Majid N, Dimos P 2010 Appl. Phys. Lett. 97 161904Google Scholar

    [9]

    陈聪, 张若钦, 李锋, 李志远 2023 72 124302Google Scholar

    Chen C, Zhang R Q, Li F, Li Z Y 2023 Acta Phys. Sin. 72 124302Google Scholar

    [10]

    Wu B, Vansaders B, Lim M X, Jaeger H M 2023 Proc. Natl. Acad. Sci. U. S. A. 120 e2301625120Google Scholar

    [11]

    Hosseinzadeh V A, Holt R G 2017 J. Appl. Phys. 121 174502Google Scholar

    [12]

    Kremer J, Kilzer A, Petermann M 2018 Rev. Sci. Instrum. 89 015109Google Scholar

    [13]

    Brillo J, Pommrich A I, Meyer A 2011 Phys. Rev. Lett. 107 165902Google Scholar

    [14]

    Su Y, Mohr M, Wunderlich R K, Wang X D, Cao Q P, Zhang D X, Yang Y, Fecht H J, Jiang J Z 2020 J. Mol. Liq. 298 111992Google Scholar

    [15]

    Mark P, Taketoshi H, Minoru E, Ivan E 1995 J. Cryst. 151 60Google Scholar

    [16]

    Lü Y J, Wei B 2006 J. Chem. Phys. 125 144503Google Scholar

    [17]

    Andrade M A B, Marzo A, Adamowski J C 2020 Appl. Phys. Lett. 116 250501Google Scholar

    [18]

    杜人君, 解文军 2011 60 114302Google Scholar

    Du R J, Xie W J 2011 Acta Phys. Sin. 60 114302Google Scholar

    [19]

    王哲, 王发展, 王欣, 何银花, 马姗, 吴振 2014 63 076101Google Scholar

    Wang Z, Wang F Z, Wang X, He Y H, Ma S, Wu Z 2014 Acta Phys. Sin. 63 076101Google Scholar

    [20]

    Lü Y J, Xie W J, Wei B 2005 Appl. Phys. Lett. 87 184107Google Scholar

    [21]

    Mauro N A, Vogt A J, Johnson M L, Bendert J C, Kelton K F 2013 Appl. Phys. Lett. 103 021904Google Scholar

    [22]

    Mauro N A, Vogt A J, Johnson M L, Bendert J C, Soklaski R, Yang L, Kelton K F 2013 Acta Mater. 61 19

    [23]

    Wolfgang R, Joseph P, Allen C, Daniel D 2023 J. Acoust. Soc. Am. 154 2

    [24]

    Loops J H, Lima E B, Leão-Neto J P, Silva G T 2020 Phys. Rev. E 101 043102Google Scholar

    [25]

    O’Connell R A, Sharratt W N, Cabral J T 2023 Phys. Rev. Lett. 131 218101Google Scholar

    [26]

    Zsolt V, Arnold R, Jenő K, András R 2019 J. Cryst. 506 127Google Scholar

    [27]

    Rodriguez J E, Kreischer C, Volkmann T, Matson D M 2017 Acta Mater. 122 431Google Scholar

    [28]

    Ohsaka K, Trinh E H 1990 J. Cryst. 106 191Google Scholar

    [29]

    Witusiewicz V T, Hecht U, Rex S 2013 J. Cryst. 375 84Google Scholar

    [30]

    Lee C P, Wang T G 1993 J. Acoust. Soc. Am. 94 1099Google Scholar

    [31]

    Xie W J, Wei B 2002 J. Appl. Phys. 93 3016

  • [1] 孙贵花, 张庆礼, 罗建乔, 王小飞, 谷长江. Pr, Yb, Ho:GdScO3晶体生长及光谱性能.  , doi: 10.7498/aps.73.20231362
    [2] 贺华丹, 钟琦超, 解文军. 声悬浮条件下双水相液滴的蒸发与相分离.  , doi: 10.7498/aps.73.20230963
    [3] 王欢, 何春娟, 徐升, 王义炎, 曾祥雨, 林浚发, 王小艳, 巩静, 马小平, 韩坤, 王乙婷, 夏天龙. 拓扑半金属及磁性拓扑材料的单晶生长.  , doi: 10.7498/aps.72.20221574
    [4] 孙贵花, 张庆礼, 罗建乔, 王小飞, 谷长江. Pr,Yb,Ho:GdScO3晶体生长及光谱性能研究.  , doi: 10.7498/aps.72.20231362
    [5] 孙贵花, 张庆礼, 罗建乔, 孙敦陆, 谷长江, 郑丽丽, 韩松, 李为民. Ti:MgAl2O4激光晶体的提拉法生长及性能表征.  , doi: 10.7498/aps.69.20191150
    [6] 张妮, 刘丁, 冯雪亮. 直拉硅单晶生长过程中工艺参数对相变界面形态的影响.  , doi: 10.7498/aps.67.20180305
    [7] 郭灿, 王锦程, 王志军, 李俊杰, 郭耀麟, 唐赛. BCC枝晶生长原子堆垛过程的晶体相场研究.  , doi: 10.7498/aps.64.028102
    [8] 黄伟超, 刘丁, 焦尚彬, 张妮. 直拉法晶体生长过程非稳态流体热流耦合.  , doi: 10.7498/aps.64.208102
    [9] 解文军, 滕鹏飞. 声悬浮过程的格子Boltzmann方法研究.  , doi: 10.7498/aps.63.164301
    [10] 周鹏宇, 张庆礼, 杨华军, 宁凯杰, 孙敦陆, 罗建乔, 殷绍唐. 5 at%Yb3+: YNbO4 的提拉法晶体生长和光谱特性.  , doi: 10.7498/aps.61.228103
    [11] 邵学鹏, 解文军. 声悬浮条件下黏性液滴的扇谐振荡规律研究.  , doi: 10.7498/aps.61.134302
    [12] 鄢振麟, 解文军, 沈昌乐, 魏炳波. 声悬浮液滴的表面毛细波及八阶扇谐振荡.  , doi: 10.7498/aps.60.064302
    [13] 杜人君, 解文军. 声悬浮条件下环己烷液滴的蒸发凝固.  , doi: 10.7498/aps.60.114302
    [14] 邢辉, 陈长乐, 金克新, 谭兴毅, 范飞. 相场晶体法模拟过冷熔体中的晶体生长.  , doi: 10.7498/aps.59.8218
    [15] 牛睿祺, 董慧茹, 王云平. 非线性光学晶体4-(4-二甲基氨基苯乙烯基)甲基吡啶对甲基苯磺酸盐的制备与性能研究.  , doi: 10.7498/aps.56.4235
    [16] 王英伟, 王自东, 程灏波. 新型激光晶体Yb:KY(WO4)2的结构与光谱.  , doi: 10.7498/aps.55.4803
    [17] 刘向荣, 王 楠, 魏炳波. 无容器条件下Cu-Pb偏晶的快速生长.  , doi: 10.7498/aps.54.1671
    [18] 徐锦锋, 魏炳波. 快速凝固Co-Cu包晶合金的电学性能.  , doi: 10.7498/aps.54.3444
    [19] 张 琳, 李恩普, 冯 伟, 洪振宇, 解文军, 马仰华. 声悬浮过程的激光全息干涉研究.  , doi: 10.7498/aps.54.2038
    [20] 徐锦锋, 魏炳波. 急冷快速凝固过程中液相流动与组织形成的相关规律.  , doi: 10.7498/aps.53.1909
计量
  • 文章访问数:  320
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-19
  • 修回日期:  2025-01-09
  • 上网日期:  2025-02-09

/

返回文章
返回
Baidu
map