-
In this paper, a novel tunable mode-filter optical fiber consisting of a high-index core and petal-shaped cladding surrounded by a high-index outer ring is proposed. The cladding of the fiber is formed with periodically arranged liquid rods that support cladding modes with effective indexes. These cladding modes form a two-super-mode group. The mode-selection is realized by the coupling between the core mode and the super-mode group. With the petal-shaped cladding, cladding mode can be transmitted at high loss. With the liquid rods, the index-band of super-mode group can be adjusted by external temperature field, thereby achieving the purpose of tunable mode-selective. The super-mode group formed by the LP11 mode of the liquid rods effectively increases its operating bandwidth and temperature tuning range. The numerical simulation results show that the mode-filter fiber with a length of only 71.4 mm can achieve a particular mode loss more than 20 dB, while other modes’ losses are below 1 dB. This special fiber can be used as a mode-filter in the few-mode fiber transmission system to reduce mode crosstalk of converters, multiplexer/demultiplexer, optical switch and optical routing.
-
Keywords:
- micro-structure optical fiber /
- super-mode /
- liquid rods /
- mode-filter /
- loss
[1] Turukhin A, Sinkin O V, Batshon H G, Zhang H, Sun Y, Mazurczyk M, Davidson C R, Cai J X, Bolshtyansky M A, Foursa D G, Pilipetskii A 2016 Proceedings of Optical Fiber Communications Conference and Exhibition (OFC 2016) Anaheim, California, USA. March 20−24, 2016
[2] Hong X, Zeng X, Li Y, Mo Q, Tian Y, Li W, Liu Z, Wu J 2016 Appl. Opt. 55 9360Google Scholar
[3] 姚殊畅, 张敏明, 唐明, 沈平, 刘德明 2013 62 144215Google Scholar
Yao X C, Zhang M M, Tang M, Sheng P, Liu D M 2013 Acta Phys. Sin. 62 144215Google Scholar
[4] Koebele C, Salsi M, Sperti D, Tran P, Brindel P, Mardoyan H, Bigo S, Boutin A, Verluise F, Sillard P, Astruc M, Provost L, Cerou F, Charlet G 2011 Opt. Express 19 16593Google Scholar
[5] Sarmiento S, Altabas J A, Izquierdo D, Garces I, Spadaro S, Lazaro J A 2017 J. Opt. Commun. Netw. 9 1116Google Scholar
[6] Ramachandran S, Fini J M, Mermelstein M, Nicholson J W, Ghalmi S, Yan M F 2008 Laser Photon. Rev. 2 429Google Scholar
[7] Driscoll J B, Grote R R, Souhan B, Dadap J I, Lu M, Osgood R M 2013 Opt. Lett. 38 1854Google Scholar
[8] Nobutomo H, Kuimasa S, Taiji S, Takashi M, Kyozo T, Masanori K, Fumihiko 2013 Opt. Express 21 25752Google Scholar
[9] Riesen N, Love J D 2012 Appl. Opt. 51 2778Google Scholar
[10] Saitoh F, Saitoh K, Koshiba M 2010 Opt. Express 18 4709Google Scholar
[11] Yu C P, Liou J H, Chiu Y J, Taga 2011 Opt. Express 19 12673Google Scholar
[12] Tsekrekos C P, Syvridis, 2012 IEEE Photonic Tech. L. 24 1638Google Scholar
[13] Chang S H, Chung H S, Ryf R, Fontaine N K, Han C, Park K J, Kim K, Lee J C, Lee J H, Kim B Y, Kim Y K 2015 Opt. Express 23 7164Google Scholar
[14] Chang S H, Moon S R, Chen H, Fontaine N K, Park K J, Kim K, Lee J K 2017 Opt. Express 25 5734Google Scholar
[15] Pureur V, Knight J C, Kuhlmey B T 2010 Opt. Express 18 8906Google Scholar
[16] Park K J, Song K Y, Kim Y K, Lee J H, Kim B Y 2016 Opt. Express 24 3543Google Scholar
[17] Yerolatsitis S, Harrington K, Thomson R R, Birks T A 2017 Optical Fiber Communications Conference and Exhibition (Ofc 2017) Los Angeles, California, USA. March 19−23
[18] Velazquez-Benitez A M, Alvarado J C, Lopez-Galmiche G, Antonio-Lopez J E, Hernandez-Cordero J, Sanchez-Mondragon J, Sillard P, Okonkwo C M, Amezcua-Correa R 2015 Opt. Lett. 40 1663Google Scholar
[19] Sai X, Li Y, Yang C, Li W, Qiu J, Hong X, Zuo Y, Guo H, Tong W, Wu J 2017 Opt. Lett. 42 4355Google Scholar
[20] Chen M Y, Chiang K S 2016 IEEE J. Sel. Top. Quant. 22 4900307
[21] 姚建铨, 王然, 苗银萍, 陆颖, 赵晓蕾, 景磊 2013 中国激光 40 0101002
Yao J Q, Wang R, Miao Y P, Lu Y, Zhao X L, Jin L 2013 Chinese J. Lasers 40 0101002
[22] 吴倩, 郭晓晨, 施伟华 2018 67 184212Google Scholar
Wu Q, Guo X C, Shi W H 2018 Acta Phys. Sin. 67 184212Google Scholar
[23] Qi T, Jung Y, Xiao L, Wang J, Xiao S, Lu C, Tam H Y, Peacock A C 2016 Opt. Lett. 41 4763Google Scholar
[24] 程兰, 罗兴, 韦会峰, 李海清, 彭景刚, 戴能利, 李进延 2014 63 074210Google Scholar
Cheng L, Luo X, Wei H F, Li H Q, Peng J G, Dai N L, Li J Y 2014 Acta Phys. Sin. 63 074210Google Scholar
[25] Stone J M, Pearce G J, Luan F, Birks T A, Knight J C, George A K, Bird D M 2006 Opt. Express 14 6291Google Scholar
[26] Argyros A, Birks T A, Leon-Saval S G, Cordeiro C M B, Russell P S 2005 Opt. Express 13 2503Google Scholar
[27] Park J, Kang D E, Paulson B, Nazari T, Oh K 2014 Opt. Express 22 17320Google Scholar
[28] Dimitropoulos D, Houshmand B, Claps R, Jalali B 2003 Opt. Lett. 28 1954Google Scholar
[29] Poon J, Istrate E, Allard M, Sargent E H 2003 IEEE J. Sel. Top. Quant. 39 778Google Scholar
[30] Samoc A 2003 J. Appl. Phys. 94 6167Google Scholar
[31] Zhang R, Teipel J, Giessen H 2006 Opt. Express 14 6800Google Scholar
[32] Couris S, Renard M, Faucher O, Lavorel B, Chaux R, Koudoumas E, Michaut X 2003 Chem. Phys. Lett. 369 318Google Scholar
[33] Liu Y Q, Guo Z Y, Zhang Y, Chiang K S, Dong X Y 2000 Electron. Lett. 36 56
-
图 7 不同液体折射率时, 四种纤芯模式的损耗曲线 (a)
${n_{{\rm{liquid}}}} = {\rm{1}}{\rm{.4937}}$ ; (b)${n_{{\rm{liquid}}}} = {\rm{1}}{\rm{.4892}}$ ; (c)${n_{{\rm{liquid}}}} = {\rm{1}}{\rm{.486}}$ ; (d)${n_{{\rm{liquid}}}}$ = 1.4812Figure 7. The loss of four core-mode with various liquid index: (a)
${n_{{\rm{liquid}}}} = {\rm{1}}{\rm{.4937}}$ ; (b)${n_{{\rm{liquid}}}} = {\rm{1}}{\rm{.4892}}$ ; (c)${n_{{\rm{liquid}}}} = {\rm{1}}{\rm{.486}}$ ; (d)${n_{{\rm{liquid}}}} = {\rm{1}}{\rm{.4812}}$ . -
[1] Turukhin A, Sinkin O V, Batshon H G, Zhang H, Sun Y, Mazurczyk M, Davidson C R, Cai J X, Bolshtyansky M A, Foursa D G, Pilipetskii A 2016 Proceedings of Optical Fiber Communications Conference and Exhibition (OFC 2016) Anaheim, California, USA. March 20−24, 2016
[2] Hong X, Zeng X, Li Y, Mo Q, Tian Y, Li W, Liu Z, Wu J 2016 Appl. Opt. 55 9360Google Scholar
[3] 姚殊畅, 张敏明, 唐明, 沈平, 刘德明 2013 62 144215Google Scholar
Yao X C, Zhang M M, Tang M, Sheng P, Liu D M 2013 Acta Phys. Sin. 62 144215Google Scholar
[4] Koebele C, Salsi M, Sperti D, Tran P, Brindel P, Mardoyan H, Bigo S, Boutin A, Verluise F, Sillard P, Astruc M, Provost L, Cerou F, Charlet G 2011 Opt. Express 19 16593Google Scholar
[5] Sarmiento S, Altabas J A, Izquierdo D, Garces I, Spadaro S, Lazaro J A 2017 J. Opt. Commun. Netw. 9 1116Google Scholar
[6] Ramachandran S, Fini J M, Mermelstein M, Nicholson J W, Ghalmi S, Yan M F 2008 Laser Photon. Rev. 2 429Google Scholar
[7] Driscoll J B, Grote R R, Souhan B, Dadap J I, Lu M, Osgood R M 2013 Opt. Lett. 38 1854Google Scholar
[8] Nobutomo H, Kuimasa S, Taiji S, Takashi M, Kyozo T, Masanori K, Fumihiko 2013 Opt. Express 21 25752Google Scholar
[9] Riesen N, Love J D 2012 Appl. Opt. 51 2778Google Scholar
[10] Saitoh F, Saitoh K, Koshiba M 2010 Opt. Express 18 4709Google Scholar
[11] Yu C P, Liou J H, Chiu Y J, Taga 2011 Opt. Express 19 12673Google Scholar
[12] Tsekrekos C P, Syvridis, 2012 IEEE Photonic Tech. L. 24 1638Google Scholar
[13] Chang S H, Chung H S, Ryf R, Fontaine N K, Han C, Park K J, Kim K, Lee J C, Lee J H, Kim B Y, Kim Y K 2015 Opt. Express 23 7164Google Scholar
[14] Chang S H, Moon S R, Chen H, Fontaine N K, Park K J, Kim K, Lee J K 2017 Opt. Express 25 5734Google Scholar
[15] Pureur V, Knight J C, Kuhlmey B T 2010 Opt. Express 18 8906Google Scholar
[16] Park K J, Song K Y, Kim Y K, Lee J H, Kim B Y 2016 Opt. Express 24 3543Google Scholar
[17] Yerolatsitis S, Harrington K, Thomson R R, Birks T A 2017 Optical Fiber Communications Conference and Exhibition (Ofc 2017) Los Angeles, California, USA. March 19−23
[18] Velazquez-Benitez A M, Alvarado J C, Lopez-Galmiche G, Antonio-Lopez J E, Hernandez-Cordero J, Sanchez-Mondragon J, Sillard P, Okonkwo C M, Amezcua-Correa R 2015 Opt. Lett. 40 1663Google Scholar
[19] Sai X, Li Y, Yang C, Li W, Qiu J, Hong X, Zuo Y, Guo H, Tong W, Wu J 2017 Opt. Lett. 42 4355Google Scholar
[20] Chen M Y, Chiang K S 2016 IEEE J. Sel. Top. Quant. 22 4900307
[21] 姚建铨, 王然, 苗银萍, 陆颖, 赵晓蕾, 景磊 2013 中国激光 40 0101002
Yao J Q, Wang R, Miao Y P, Lu Y, Zhao X L, Jin L 2013 Chinese J. Lasers 40 0101002
[22] 吴倩, 郭晓晨, 施伟华 2018 67 184212Google Scholar
Wu Q, Guo X C, Shi W H 2018 Acta Phys. Sin. 67 184212Google Scholar
[23] Qi T, Jung Y, Xiao L, Wang J, Xiao S, Lu C, Tam H Y, Peacock A C 2016 Opt. Lett. 41 4763Google Scholar
[24] 程兰, 罗兴, 韦会峰, 李海清, 彭景刚, 戴能利, 李进延 2014 63 074210Google Scholar
Cheng L, Luo X, Wei H F, Li H Q, Peng J G, Dai N L, Li J Y 2014 Acta Phys. Sin. 63 074210Google Scholar
[25] Stone J M, Pearce G J, Luan F, Birks T A, Knight J C, George A K, Bird D M 2006 Opt. Express 14 6291Google Scholar
[26] Argyros A, Birks T A, Leon-Saval S G, Cordeiro C M B, Russell P S 2005 Opt. Express 13 2503Google Scholar
[27] Park J, Kang D E, Paulson B, Nazari T, Oh K 2014 Opt. Express 22 17320Google Scholar
[28] Dimitropoulos D, Houshmand B, Claps R, Jalali B 2003 Opt. Lett. 28 1954Google Scholar
[29] Poon J, Istrate E, Allard M, Sargent E H 2003 IEEE J. Sel. Top. Quant. 39 778Google Scholar
[30] Samoc A 2003 J. Appl. Phys. 94 6167Google Scholar
[31] Zhang R, Teipel J, Giessen H 2006 Opt. Express 14 6800Google Scholar
[32] Couris S, Renard M, Faucher O, Lavorel B, Chaux R, Koudoumas E, Michaut X 2003 Chem. Phys. Lett. 369 318Google Scholar
[33] Liu Y Q, Guo Z Y, Zhang Y, Chiang K S, Dong X Y 2000 Electron. Lett. 36 56
Catalog
Metrics
- Abstract views: 9675
- PDF Downloads: 50
- Cited By: 0