搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

在单零色散微结构光纤中一次抽运同时发生两组四波混频的实验观察

李建设 李曙光 赵原源 刘强 范振凯 王光耀

引用本文:
Citation:

在单零色散微结构光纤中一次抽运同时发生两组四波混频的实验观察

李建设, 李曙光, 赵原源, 刘强, 范振凯, 王光耀

Experimental studies of two sets of four-wave mixing processes in a single-zero-dispersion microstructured fiber by the same pump

Li Jian-She, Li Shu-Guang, Zhao Yuan-Yuan, Liu Qiang, Fan Zhen-Kai, Wang Guang-Yao
PDF
导出引用
  • 采用可以减小纤芯面积的小气孔设计方案巧妙设计并成功拉制了一根高非线性的单零色散微结构光纤.利用有限元法模拟并计算得到了该光纤的基模有效折射率、色散系数和非线性系数等基本属性随波长的变化关系,然后利用四波混频的有效相位失配方程模拟了其相位失配曲线.模拟表明,在该光纤中可以同时发生两组四波混频.在位于微结构光纤的正常色散区的0.800,0.810和0.820 m三个波长处,分别采用不同的功率抽运,在实验上都非常明显地观察到了分列于抽运波长两侧的四个增益波带的产生.经与相位失配曲线比较,发现它们满足相位匹配条件,从而证明了两组四波混频过程的同时发生.实验结果与理论预言符合得很好.发生在正常色散区的四波混频效应的产生可归结于负的四阶色散对相位匹配过程的贡献.本文研究可对微结构光纤的结构设计和基于四波混频的多波长转移技术的发展提供经验与借鉴,同时也对非常见波段激光器和宽带光源的开发具有参考意义.
    A highly nonlinear microstructured fiber with single-zero-dispersion wavelength is designed and drawn by reducing the core area in order to observe two groups of four-wave mixing processes by a single pump. The foundational material of the fiber is silica and its cladding is comprised of seven-layer air holes. The air holes are arranged in a hexagonal lattice and the lattice pitch is =2.5 m. The radius of each of the air holes is r=1.03 m. There is just one zero-dispersion wavelength in our considerable wavelength range for the microstructured fiber and the corresponding wavelength D is nearly 0.85 m(D=0.85 m). The basic properties of the fiber including effective refractive index, dispersion coefficient, and nonlinear coefficient are calculated by the finite element method. The effective mode area is 4.4 m2 and the nonlinear coefficient is 0.057 m-1W-1 for the foundation mode near the wavelength of 0.8 m, and the nonlinear coefficient reaches 0.053 m-1W-1 near the zero dispersion wavelength of 0.85 m. In short, the optical fiber has a stable and high nonlinear coefficient in the whole experimental band(0.80-0.83 m), which provides an important guarantee for the occurrence of four-wave mixing double parameter gain process. In addition, the phase mismatch curve is simulated by using the four-wave mixing phase mismatch formulation. Numerical simulation shows that two sets of four-wave mixing processes can occur in the designed fiber. At the normal dispersion wavelengths of 0.800, 0.810 and 0.820 m with different powers, the experimental result shows a significant feature of four gain wavebands located at both sides of the pump wavelength. By comparing experimental data with the phase mismatch curve, we find that the band generation meets four-wave mixing phase matching condition, thus, the simultaneous occurrence of two groups of four-wave mixing processes observed in the experiment is explained in theory. The experimental results are consistent well with the theoretical predictions. This also proves the theoretical predictions that two sets of parametric gain processes and two pairs of signal and idle frequency waves can be generated in PCF. The four-wave mixing effect occurring in the normal dispersion region can be attributed to the contribution of negative fourth-order dispersion to the phase matching process. The present work can provide valuable reference to designing the microstructure fibers and developing the multi-wavelength conversion technology based on four-wave mixing effect. At the same time, this work can also supply guidance for developing the uncommon waveband lasers and broadband light sources.
      通信作者: 李曙光, shuguangli@ysu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61178026,61475134,61505175)、河北省自然科学基金(批准号:E2012203035)和燕山大学博士基金(批准号:B1004)资助的课题.
      Corresponding author: Li Shu-Guang, shuguangli@ysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 61178026, 61475134, 61505175), the Nature Science Foundation of Hebei Province, China(Grant No. E2012203035), and the Doctoral Foundation of Yanshan University, China(Grant No. B1004).
    [1]

    Tanemura T, Goh C S, Kikuchi K, Set S Y 2004 IEEE. Photonic. Technol. Lett. 16 551

    [2]

    Zhang L, Yang B J, Wang Q G, He L 2008 Acta Photon. Sin. 37 2203(in Chinese)[张岚, 杨伯君, 王秋国, 何理2008光子学报37 2203]

    [3]

    Kuang Q Q, Chen Y H, Yan A, Zhang Z X, Nie Y Y, Sang M H, Zhan L 2009 Laser J. 30 36(in Chinese)[况庆强, 陈艳辉, 燕安, 张祖兴, 聂义友, 桑明煌, 詹黎2009激光杂志30 36]

    [4]

    Zhang L, Tong T H, Sega D, Kawamura H, Deng D H, Suzuki T, Ohishi Y 2015 Nonlinear Optics Kauai, USA, July 26-31, 2015 NW4A.32

    [5]

    Liang J Q, Wang J F, Li P, Wang Y C 2013 Chin. J. Lasers 40 0402009(in Chinese)[梁俊强, 王娟芬, 李璞, 王云才2013中国激光40 0402009]

    [6]

    Wang L J, Yan L S, Guo Y H, Wen K H, Chen Z Y, Pan W, Luo B 2013 Acta Opt. Sin. 33 0419002(in Chinese)[王鲁俊, 闫连山, 郭迎辉, 温坤华, 陈智宇, 潘炜, 罗斌2013光学学报33 0419002]

    [7]

    Zhang L, Tuan T H, Sega D, Kawamura H, Deng D H, Suzuki T, Ohishi Y 2015 Opt. Express 23 26299

    [8]

    Zhang L 2014 Ph. D. Dissertation (Beijing:Tsinghua University)(in Chinese)[张磊2014博士学位论文(北京:清华大学)]

    [9]

    Reeves W H, Skryabin D V, Biancalana F, Knight J C, Russell P St J, Omenetto F G, Efimov A, Taylor A J 2003 Nature 424 511

    [10]

    Zhang L, Yang S G, Han Y, Chen H W, Chen M H, Xie S Z 2013 Opt. Commun. 300 22

    [11]

    Koshiba M, Saitoh K 2003 Appl. Opt. 42 6267

    [12]

    Bréchet F, Marcou J, Pagnoux D, Roy P 2000 Opt. Fiber. Technol. 6 181

    [13]

    Malitson I H 1965 J. Opt. Soc. Am. A 55 1205

    [14]

    Lou S Q, Ren G B, Yan F P, Jian S S 2005 Acta Phys. Sin. 54 1229(in Chinese)[娄淑琴, 任国斌, 延凤平, 简水生2005 54 1229]

    [15]

    Kerbage C, Eggleton B 2002 Opt. Express 10 246

    [16]

    Yang T Y, Wang E L, Jiang H M, Hu Z J, Xie K 2015 Opt. Express 23 8329

    [17]

    Yan F P, Li Y F, Wang L, Gong T R, Liu P, Liu Y, Tao P L, Qu M X, Jian S S 2008 Acta Phys. Sin. 57 5735(in Chinese)[延凤平, 李一凡, 王琳, 龚桃荣, 刘鹏, 刘洋, 陶沛琳, 曲美霞, 简水生2008 57 5735]

    [18]

    Harvey J D, Leonhardt R, Coen S, Wong G K L, Knight J C, Wadsworth W J, Russell P St J 2003 Opt. Lett. 28 2225

    [19]

    Agrawal G P 2009 Nonlinear Fiber Optics(4th Ed.) (New York:Elsevier) pp383, 464-467

    [20]

    Li J S, Li S G, Zhao Y Y, Li H, Zhou G Y, Chen H L, Han X M, Liu Q, Han Y, Fan Z K, Zhang W, An G W 2015 IEEE Photon. J. 7 1

    [21]

    Liu X X, Wang S T, Zhao X T, Chen S, Zhou G Y, Wu X J, Li S G, Hou L T 2014 Spectrosc. Spect. Anal. 34 1460(in Chinese)[刘晓旭, 王书涛, 赵兴涛, 陈爽, 周桂耀, 吴希军, 李曙光, 侯蓝田2014光谱学与光谱分析34 1460]

    [22]

    Zhao X T, Liu X X, Wang S T, Wang W, Han Y, Liu Z L, Li S G, Hou L T 2015 Opt. Express 23 27899

    [23]

    Yuan J H, Sang X Z, Yu C X, Xin X J, Zhou G Y, Li S G, Hou L T 2011 Appl. Phys. B 104 117

  • [1]

    Tanemura T, Goh C S, Kikuchi K, Set S Y 2004 IEEE. Photonic. Technol. Lett. 16 551

    [2]

    Zhang L, Yang B J, Wang Q G, He L 2008 Acta Photon. Sin. 37 2203(in Chinese)[张岚, 杨伯君, 王秋国, 何理2008光子学报37 2203]

    [3]

    Kuang Q Q, Chen Y H, Yan A, Zhang Z X, Nie Y Y, Sang M H, Zhan L 2009 Laser J. 30 36(in Chinese)[况庆强, 陈艳辉, 燕安, 张祖兴, 聂义友, 桑明煌, 詹黎2009激光杂志30 36]

    [4]

    Zhang L, Tong T H, Sega D, Kawamura H, Deng D H, Suzuki T, Ohishi Y 2015 Nonlinear Optics Kauai, USA, July 26-31, 2015 NW4A.32

    [5]

    Liang J Q, Wang J F, Li P, Wang Y C 2013 Chin. J. Lasers 40 0402009(in Chinese)[梁俊强, 王娟芬, 李璞, 王云才2013中国激光40 0402009]

    [6]

    Wang L J, Yan L S, Guo Y H, Wen K H, Chen Z Y, Pan W, Luo B 2013 Acta Opt. Sin. 33 0419002(in Chinese)[王鲁俊, 闫连山, 郭迎辉, 温坤华, 陈智宇, 潘炜, 罗斌2013光学学报33 0419002]

    [7]

    Zhang L, Tuan T H, Sega D, Kawamura H, Deng D H, Suzuki T, Ohishi Y 2015 Opt. Express 23 26299

    [8]

    Zhang L 2014 Ph. D. Dissertation (Beijing:Tsinghua University)(in Chinese)[张磊2014博士学位论文(北京:清华大学)]

    [9]

    Reeves W H, Skryabin D V, Biancalana F, Knight J C, Russell P St J, Omenetto F G, Efimov A, Taylor A J 2003 Nature 424 511

    [10]

    Zhang L, Yang S G, Han Y, Chen H W, Chen M H, Xie S Z 2013 Opt. Commun. 300 22

    [11]

    Koshiba M, Saitoh K 2003 Appl. Opt. 42 6267

    [12]

    Bréchet F, Marcou J, Pagnoux D, Roy P 2000 Opt. Fiber. Technol. 6 181

    [13]

    Malitson I H 1965 J. Opt. Soc. Am. A 55 1205

    [14]

    Lou S Q, Ren G B, Yan F P, Jian S S 2005 Acta Phys. Sin. 54 1229(in Chinese)[娄淑琴, 任国斌, 延凤平, 简水生2005 54 1229]

    [15]

    Kerbage C, Eggleton B 2002 Opt. Express 10 246

    [16]

    Yang T Y, Wang E L, Jiang H M, Hu Z J, Xie K 2015 Opt. Express 23 8329

    [17]

    Yan F P, Li Y F, Wang L, Gong T R, Liu P, Liu Y, Tao P L, Qu M X, Jian S S 2008 Acta Phys. Sin. 57 5735(in Chinese)[延凤平, 李一凡, 王琳, 龚桃荣, 刘鹏, 刘洋, 陶沛琳, 曲美霞, 简水生2008 57 5735]

    [18]

    Harvey J D, Leonhardt R, Coen S, Wong G K L, Knight J C, Wadsworth W J, Russell P St J 2003 Opt. Lett. 28 2225

    [19]

    Agrawal G P 2009 Nonlinear Fiber Optics(4th Ed.) (New York:Elsevier) pp383, 464-467

    [20]

    Li J S, Li S G, Zhao Y Y, Li H, Zhou G Y, Chen H L, Han X M, Liu Q, Han Y, Fan Z K, Zhang W, An G W 2015 IEEE Photon. J. 7 1

    [21]

    Liu X X, Wang S T, Zhao X T, Chen S, Zhou G Y, Wu X J, Li S G, Hou L T 2014 Spectrosc. Spect. Anal. 34 1460(in Chinese)[刘晓旭, 王书涛, 赵兴涛, 陈爽, 周桂耀, 吴希军, 李曙光, 侯蓝田2014光谱学与光谱分析34 1460]

    [22]

    Zhao X T, Liu X X, Wang S T, Wang W, Han Y, Liu Z L, Li S G, Hou L T 2015 Opt. Express 23 27899

    [23]

    Yuan J H, Sang X Z, Yu C X, Xin X J, Zhou G Y, Li S G, Hou L T 2011 Appl. Phys. B 104 117

  • [1] 袁金健, 顾民, 黄润生. 运动界面的电磁波相位匹配.  , 2024, 73(13): 134201. doi: 10.7498/aps.73.20240269
    [2] 万峰, 武保剑, 曹亚敏, 王瑜浩, 文峰, 邱昆. 空频复用光纤中四波混频过程的解析分析方法.  , 2019, 68(11): 114207. doi: 10.7498/aps.68.20182129
    [3] 曹亚敏, 武保剑, 万峰, 邱昆. 四波混频光相位运算器原理及其噪声性能研究.  , 2018, 67(9): 094208. doi: 10.7498/aps.67.20172638
    [4] 徐闵喃, 周桂耀, 陈成, 侯峙云, 夏长明, 周概, 刘宏展, 刘建涛, 张卫. 具有四模式的低串扰及大群时延多芯微结构光纤的设计.  , 2015, 64(23): 234206. doi: 10.7498/aps.64.234206
    [5] 陈其杰, 周桂耀, 石富坤, 李端明, 苑金辉, 夏长明, 葛姝. 微结构光纤近红外色散波产生的研究.  , 2015, 64(3): 034215. doi: 10.7498/aps.64.034215
    [6] 李建设, 李曙光, 赵原源, 韩颖, 陈海良, 韩晓明, 周桂耀. 在远离光子晶体光纤零色散波长的正常色散区入射飞秒脉冲产生四波混频及孤子效应的实验研究.  , 2014, 63(16): 164206. doi: 10.7498/aps.63.164206
    [7] 李述标, 武保剑, 文峰, 韩瑞. 高非线性光纤中四波混频的磁控机理研究.  , 2013, 62(2): 024213. doi: 10.7498/aps.62.024213
    [8] 惠战强, 张建国. 基于光子晶体光纤中双抽运四波混频效应的非归零到归零码型转换实验研究.  , 2013, 62(8): 084209. doi: 10.7498/aps.62.084209
    [9] 李博, 谭中伟, 张晓兴. 利用交叉相位调制和四波混频制作的时间透镜的仿真分析.  , 2012, 61(1): 014203. doi: 10.7498/aps.61.014203
    [10] 惠战强, 张建国. 基于光子晶体光纤中四波混频效应的单到双非归零到归零码型转换.  , 2012, 61(1): 014217. doi: 10.7498/aps.61.014217
    [11] 尹经禅, 肖晓晟, 杨昌喜. 基于光纤四波混频波长转换和色散的慢光实验研究.  , 2010, 59(6): 3986-3991. doi: 10.7498/aps.59.3986
    [12] 苗向蕊, 高士明, 高 莹. 基于光纤四波混频效应的新型组播方法.  , 2008, 57(12): 7699-7704. doi: 10.7498/aps.57.7699
    [13] 杨 磊, 李小英, 王宝善. 利用光纤中自发四波混频产生纠缠光子的实验装置.  , 2008, 57(8): 4933-4940. doi: 10.7498/aps.57.4933
    [14] 季玲玲, 陆培祥, 陈 伟, 戴能利, 张继皇, 蒋作文, 李进延, 李 伟. 微结构光纤次芯中的四波混频过程.  , 2008, 57(9): 5973-5977. doi: 10.7498/aps.57.5973
    [15] 董建绩, 张新亮, 付松年, 沈 平, 黄德修. 基于半导体光放大器瞬态交叉相位调制效应的高速反相和同相波长转换的研究.  , 2007, 56(4): 2250-2255. doi: 10.7498/aps.56.2250
    [16] 贾新鸿, 钟东洲, 王 飞, 陈海涛. 基于λ/4相移分布反馈半导体激光器四波混频的THz波长转换特性研究.  , 2007, 56(5): 2637-2646. doi: 10.7498/aps.56.2637
    [17] 胡明列, 王清月, 栗岩峰, 王 专, 柴 路, 张伟力. 飞秒激光在双折射微结构光纤中模式控制的四波混频效应的实验研究.  , 2005, 54(9): 4411-4415. doi: 10.7498/aps.54.4411
    [18] 李培丽, 张新亮, 陈 俊, 黄黎蓉, 黄德修. 基于环行腔激光器四波混频型可调谐波长转换的理论研究.  , 2005, 54(3): 1222-1228. doi: 10.7498/aps.54.1222
    [19] 邵钟浩. 具有非均匀零色散波长光纤中的四波混频.  , 2001, 50(1): 73-78. doi: 10.7498/aps.50.73
    [20] 刘雪明, 刘 琳, 孙小菡, 张明德. 石英光纤中二次非线性级联波长转换的理论分析.  , 2000, 49(9): 1792-1797. doi: 10.7498/aps.49.1792
计量
  • 文章访问数:  6038
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-15
  • 修回日期:  2016-07-06
  • 刊出日期:  2016-11-05

/

返回文章
返回
Baidu
map