Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental studies of two sets of four-wave mixing processes in a single-zero-dispersion microstructured fiber by the same pump

Li Jian-She Li Shu-Guang Zhao Yuan-Yuan Liu Qiang Fan Zhen-Kai Wang Guang-Yao

Citation:

Experimental studies of two sets of four-wave mixing processes in a single-zero-dispersion microstructured fiber by the same pump

Li Jian-She, Li Shu-Guang, Zhao Yuan-Yuan, Liu Qiang, Fan Zhen-Kai, Wang Guang-Yao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A highly nonlinear microstructured fiber with single-zero-dispersion wavelength is designed and drawn by reducing the core area in order to observe two groups of four-wave mixing processes by a single pump. The foundational material of the fiber is silica and its cladding is comprised of seven-layer air holes. The air holes are arranged in a hexagonal lattice and the lattice pitch is =2.5 m. The radius of each of the air holes is r=1.03 m. There is just one zero-dispersion wavelength in our considerable wavelength range for the microstructured fiber and the corresponding wavelength D is nearly 0.85 m(D=0.85 m). The basic properties of the fiber including effective refractive index, dispersion coefficient, and nonlinear coefficient are calculated by the finite element method. The effective mode area is 4.4 m2 and the nonlinear coefficient is 0.057 m-1W-1 for the foundation mode near the wavelength of 0.8 m, and the nonlinear coefficient reaches 0.053 m-1W-1 near the zero dispersion wavelength of 0.85 m. In short, the optical fiber has a stable and high nonlinear coefficient in the whole experimental band(0.80-0.83 m), which provides an important guarantee for the occurrence of four-wave mixing double parameter gain process. In addition, the phase mismatch curve is simulated by using the four-wave mixing phase mismatch formulation. Numerical simulation shows that two sets of four-wave mixing processes can occur in the designed fiber. At the normal dispersion wavelengths of 0.800, 0.810 and 0.820 m with different powers, the experimental result shows a significant feature of four gain wavebands located at both sides of the pump wavelength. By comparing experimental data with the phase mismatch curve, we find that the band generation meets four-wave mixing phase matching condition, thus, the simultaneous occurrence of two groups of four-wave mixing processes observed in the experiment is explained in theory. The experimental results are consistent well with the theoretical predictions. This also proves the theoretical predictions that two sets of parametric gain processes and two pairs of signal and idle frequency waves can be generated in PCF. The four-wave mixing effect occurring in the normal dispersion region can be attributed to the contribution of negative fourth-order dispersion to the phase matching process. The present work can provide valuable reference to designing the microstructure fibers and developing the multi-wavelength conversion technology based on four-wave mixing effect. At the same time, this work can also supply guidance for developing the uncommon waveband lasers and broadband light sources.
      Corresponding author: Li Shu-Guang, shuguangli@ysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 61178026, 61475134, 61505175), the Nature Science Foundation of Hebei Province, China(Grant No. E2012203035), and the Doctoral Foundation of Yanshan University, China(Grant No. B1004).
    [1]

    Tanemura T, Goh C S, Kikuchi K, Set S Y 2004 IEEE. Photonic. Technol. Lett. 16 551

    [2]

    Zhang L, Yang B J, Wang Q G, He L 2008 Acta Photon. Sin. 37 2203(in Chinese)[张岚, 杨伯君, 王秋国, 何理2008光子学报37 2203]

    [3]

    Kuang Q Q, Chen Y H, Yan A, Zhang Z X, Nie Y Y, Sang M H, Zhan L 2009 Laser J. 30 36(in Chinese)[况庆强, 陈艳辉, 燕安, 张祖兴, 聂义友, 桑明煌, 詹黎2009激光杂志30 36]

    [4]

    Zhang L, Tong T H, Sega D, Kawamura H, Deng D H, Suzuki T, Ohishi Y 2015 Nonlinear Optics Kauai, USA, July 26-31, 2015 NW4A.32

    [5]

    Liang J Q, Wang J F, Li P, Wang Y C 2013 Chin. J. Lasers 40 0402009(in Chinese)[梁俊强, 王娟芬, 李璞, 王云才2013中国激光40 0402009]

    [6]

    Wang L J, Yan L S, Guo Y H, Wen K H, Chen Z Y, Pan W, Luo B 2013 Acta Opt. Sin. 33 0419002(in Chinese)[王鲁俊, 闫连山, 郭迎辉, 温坤华, 陈智宇, 潘炜, 罗斌2013光学学报33 0419002]

    [7]

    Zhang L, Tuan T H, Sega D, Kawamura H, Deng D H, Suzuki T, Ohishi Y 2015 Opt. Express 23 26299

    [8]

    Zhang L 2014 Ph. D. Dissertation (Beijing:Tsinghua University)(in Chinese)[张磊2014博士学位论文(北京:清华大学)]

    [9]

    Reeves W H, Skryabin D V, Biancalana F, Knight J C, Russell P St J, Omenetto F G, Efimov A, Taylor A J 2003 Nature 424 511

    [10]

    Zhang L, Yang S G, Han Y, Chen H W, Chen M H, Xie S Z 2013 Opt. Commun. 300 22

    [11]

    Koshiba M, Saitoh K 2003 Appl. Opt. 42 6267

    [12]

    Bréchet F, Marcou J, Pagnoux D, Roy P 2000 Opt. Fiber. Technol. 6 181

    [13]

    Malitson I H 1965 J. Opt. Soc. Am. A 55 1205

    [14]

    Lou S Q, Ren G B, Yan F P, Jian S S 2005 Acta Phys. Sin. 54 1229(in Chinese)[娄淑琴, 任国斌, 延凤平, 简水生2005 54 1229]

    [15]

    Kerbage C, Eggleton B 2002 Opt. Express 10 246

    [16]

    Yang T Y, Wang E L, Jiang H M, Hu Z J, Xie K 2015 Opt. Express 23 8329

    [17]

    Yan F P, Li Y F, Wang L, Gong T R, Liu P, Liu Y, Tao P L, Qu M X, Jian S S 2008 Acta Phys. Sin. 57 5735(in Chinese)[延凤平, 李一凡, 王琳, 龚桃荣, 刘鹏, 刘洋, 陶沛琳, 曲美霞, 简水生2008 57 5735]

    [18]

    Harvey J D, Leonhardt R, Coen S, Wong G K L, Knight J C, Wadsworth W J, Russell P St J 2003 Opt. Lett. 28 2225

    [19]

    Agrawal G P 2009 Nonlinear Fiber Optics(4th Ed.) (New York:Elsevier) pp383, 464-467

    [20]

    Li J S, Li S G, Zhao Y Y, Li H, Zhou G Y, Chen H L, Han X M, Liu Q, Han Y, Fan Z K, Zhang W, An G W 2015 IEEE Photon. J. 7 1

    [21]

    Liu X X, Wang S T, Zhao X T, Chen S, Zhou G Y, Wu X J, Li S G, Hou L T 2014 Spectrosc. Spect. Anal. 34 1460(in Chinese)[刘晓旭, 王书涛, 赵兴涛, 陈爽, 周桂耀, 吴希军, 李曙光, 侯蓝田2014光谱学与光谱分析34 1460]

    [22]

    Zhao X T, Liu X X, Wang S T, Wang W, Han Y, Liu Z L, Li S G, Hou L T 2015 Opt. Express 23 27899

    [23]

    Yuan J H, Sang X Z, Yu C X, Xin X J, Zhou G Y, Li S G, Hou L T 2011 Appl. Phys. B 104 117

  • [1]

    Tanemura T, Goh C S, Kikuchi K, Set S Y 2004 IEEE. Photonic. Technol. Lett. 16 551

    [2]

    Zhang L, Yang B J, Wang Q G, He L 2008 Acta Photon. Sin. 37 2203(in Chinese)[张岚, 杨伯君, 王秋国, 何理2008光子学报37 2203]

    [3]

    Kuang Q Q, Chen Y H, Yan A, Zhang Z X, Nie Y Y, Sang M H, Zhan L 2009 Laser J. 30 36(in Chinese)[况庆强, 陈艳辉, 燕安, 张祖兴, 聂义友, 桑明煌, 詹黎2009激光杂志30 36]

    [4]

    Zhang L, Tong T H, Sega D, Kawamura H, Deng D H, Suzuki T, Ohishi Y 2015 Nonlinear Optics Kauai, USA, July 26-31, 2015 NW4A.32

    [5]

    Liang J Q, Wang J F, Li P, Wang Y C 2013 Chin. J. Lasers 40 0402009(in Chinese)[梁俊强, 王娟芬, 李璞, 王云才2013中国激光40 0402009]

    [6]

    Wang L J, Yan L S, Guo Y H, Wen K H, Chen Z Y, Pan W, Luo B 2013 Acta Opt. Sin. 33 0419002(in Chinese)[王鲁俊, 闫连山, 郭迎辉, 温坤华, 陈智宇, 潘炜, 罗斌2013光学学报33 0419002]

    [7]

    Zhang L, Tuan T H, Sega D, Kawamura H, Deng D H, Suzuki T, Ohishi Y 2015 Opt. Express 23 26299

    [8]

    Zhang L 2014 Ph. D. Dissertation (Beijing:Tsinghua University)(in Chinese)[张磊2014博士学位论文(北京:清华大学)]

    [9]

    Reeves W H, Skryabin D V, Biancalana F, Knight J C, Russell P St J, Omenetto F G, Efimov A, Taylor A J 2003 Nature 424 511

    [10]

    Zhang L, Yang S G, Han Y, Chen H W, Chen M H, Xie S Z 2013 Opt. Commun. 300 22

    [11]

    Koshiba M, Saitoh K 2003 Appl. Opt. 42 6267

    [12]

    Bréchet F, Marcou J, Pagnoux D, Roy P 2000 Opt. Fiber. Technol. 6 181

    [13]

    Malitson I H 1965 J. Opt. Soc. Am. A 55 1205

    [14]

    Lou S Q, Ren G B, Yan F P, Jian S S 2005 Acta Phys. Sin. 54 1229(in Chinese)[娄淑琴, 任国斌, 延凤平, 简水生2005 54 1229]

    [15]

    Kerbage C, Eggleton B 2002 Opt. Express 10 246

    [16]

    Yang T Y, Wang E L, Jiang H M, Hu Z J, Xie K 2015 Opt. Express 23 8329

    [17]

    Yan F P, Li Y F, Wang L, Gong T R, Liu P, Liu Y, Tao P L, Qu M X, Jian S S 2008 Acta Phys. Sin. 57 5735(in Chinese)[延凤平, 李一凡, 王琳, 龚桃荣, 刘鹏, 刘洋, 陶沛琳, 曲美霞, 简水生2008 57 5735]

    [18]

    Harvey J D, Leonhardt R, Coen S, Wong G K L, Knight J C, Wadsworth W J, Russell P St J 2003 Opt. Lett. 28 2225

    [19]

    Agrawal G P 2009 Nonlinear Fiber Optics(4th Ed.) (New York:Elsevier) pp383, 464-467

    [20]

    Li J S, Li S G, Zhao Y Y, Li H, Zhou G Y, Chen H L, Han X M, Liu Q, Han Y, Fan Z K, Zhang W, An G W 2015 IEEE Photon. J. 7 1

    [21]

    Liu X X, Wang S T, Zhao X T, Chen S, Zhou G Y, Wu X J, Li S G, Hou L T 2014 Spectrosc. Spect. Anal. 34 1460(in Chinese)[刘晓旭, 王书涛, 赵兴涛, 陈爽, 周桂耀, 吴希军, 李曙光, 侯蓝田2014光谱学与光谱分析34 1460]

    [22]

    Zhao X T, Liu X X, Wang S T, Wang W, Han Y, Liu Z L, Li S G, Hou L T 2015 Opt. Express 23 27899

    [23]

    Yuan J H, Sang X Z, Yu C X, Xin X J, Zhou G Y, Li S G, Hou L T 2011 Appl. Phys. B 104 117

  • [1] Yuan Jin-Jian, Gu Min, Huang Run-Sheng. Phase matching of electromagnetic wave on moving interface. Acta Physica Sinica, 2024, 73(13): 134201. doi: 10.7498/aps.73.20240269
    [2] Wan Feng, Wu Bao-Jian, Cao Ya-Min, Wang Yu-Hao, Wen Feng, Qiu Kun. Analytical method for four wave mixing in space-frequency multiplexing optical fibers. Acta Physica Sinica, 2019, 68(11): 114207. doi: 10.7498/aps.68.20182129
    [3] Cao Ya-Min, Wu Bao-Jian, Wan Feng, Qiu Kun. Principle and noise performance of optical phase arithmetic devices using four wave mixing. Acta Physica Sinica, 2018, 67(9): 094208. doi: 10.7498/aps.67.20172638
    [4] Xu Min-Nan, Zhou Gui-Yao, Chen Cheng, Hou Zhi-Yun, Xia Chang-Ming, Zhou Gai, Liu Hong-Zhan, Liu Jian-Tao, Zhang Wei. Analysis of a novel four-mode micro-structured fiber with low-level crosstalk and high mode differential group delay. Acta Physica Sinica, 2015, 64(23): 234206. doi: 10.7498/aps.64.234206
    [5] Chen Qi-Jie, Zhou Gui-Yao, Shi Fu-Kun, Li Duan-Ming, Yuan Jin-Hui, Xia Chang-Ming, Ge Shu. Study of near-infrared dispersion wave generation for microstructured fiber. Acta Physica Sinica, 2015, 64(3): 034215. doi: 10.7498/aps.64.034215
    [6] Li Jian-She, Li Shu-Guang, Zhao Yuan-Yuan, Han Ying, Chen Hai-Liang, Han Xiao-Ming, Zhou Gui-Yao. Experimental research of four-wave mixing and soliton effects in a photonic crystal fiber pumped femtosecond pulses at the wavelength located normal dispersion regime away from the zero dispersion point. Acta Physica Sinica, 2014, 63(16): 164206. doi: 10.7498/aps.63.164206
    [7] Li Shu-Biao, Wu Bao-Jian, Wen Feng, Han Rui. Research on magnetic control mechanism of four-wave mixing in highly nonlinear fiber. Acta Physica Sinica, 2013, 62(2): 024213. doi: 10.7498/aps.62.024213
    [8] Hui Zhan-Qiang, Zhang Jian-Guo. All-optical format conversion from non-return-to-zero to return-to-zero based on dual-pump four-wave mixing in photonic crystal fiber. Acta Physica Sinica, 2013, 62(8): 084209. doi: 10.7498/aps.62.084209
    [9] Li Bo, Tan Zhong-Wei, Zhang Xiao-Xing. Simulation and analysis of time lens using cross phase modulation and four-wave mixing. Acta Physica Sinica, 2012, 61(1): 014203. doi: 10.7498/aps.61.014203
    [10] Hui Zhan-Qiang, Zhang Jian-Guo. All-optical format conversion from non-return-to-zero to return-to-zero based on four-wave mixing in photonic crystal fiber. Acta Physica Sinica, 2012, 61(1): 014217. doi: 10.7498/aps.61.014217
    [11] Yin Jing-Chan, Xiao Xiao-Sheng, Yang Chang-Xi. Experimental study of slow light based on four-wave mixing wavelength conversion and dispersion in optical fibers. Acta Physica Sinica, 2010, 59(6): 3986-3991. doi: 10.7498/aps.59.3986
    [12] Miao Xiang-Rui, Gao Shi-Ming, Gao Ying. A multicasting method based on four-wave mixing in highly nonlinear fibers. Acta Physica Sinica, 2008, 57(12): 7699-7704. doi: 10.7498/aps.57.7699
    [13] Yang Lei, Li Xiao-Ying, Wang Bao-Shan. Experimental schemes for developing fiber-based source of entangled photon pairs. Acta Physica Sinica, 2008, 57(8): 4933-4940. doi: 10.7498/aps.57.4933
    [14] Ji Ling-Ling, Lu Pei-Xiang, Chen Wei, Dai Neng-Li, Zhang Ji-Huang, Jiang Zuo-Wen, Li Jin-Yan, Li Wei. Four-wave-mixing process in secondary cores of a microstructured fiber. Acta Physica Sinica, 2008, 57(9): 5973-5977. doi: 10.7498/aps.57.5973
    [15] Dong Jian-Ji, Zhang Xin-Liang, Fu Song-Nian, Shum P., Huang De-Xiu. Investigation on inverted and non-inverted wavelength conversion based on transient cross phase modulation of semiconductor optical amplifier. Acta Physica Sinica, 2007, 56(4): 2250-2255. doi: 10.7498/aps.56.2250
    [16] Jia Xin-Hong, Zhong Dong-Zhou, Wang Fei, Chen Hai-Tao. Theoretical investigation on THz wavelength conversion based on four-wave mixing in QWS-DFB-LD. Acta Physica Sinica, 2007, 56(5): 2637-2646. doi: 10.7498/aps.56.2637
    [17] Hu Ming-Lie, Wang Qing-Yue, Li Yan-Feng, Wang Zhuan, Chai Lu, Zhang Wei-Li. Mode-controlled four-wave-mixing in the birefringent microstructure fiber by femtosecond laser pulses. Acta Physica Sinica, 2005, 54(9): 4411-4415. doi: 10.7498/aps.54.4411
    [18] Li Pei-Li, Zhang Xin-Liang, Chen Jun, Huang Li-Rong, Huang De-Xiu. Theoretical analysis of tunable wavelength conversion based on FWM in semiconductor fiber ring laser. Acta Physica Sinica, 2005, 54(3): 1222-1228. doi: 10.7498/aps.54.1222
    [19] Shao Zhong-Hao. . Acta Physica Sinica, 2001, 50(1): 73-78. doi: 10.7498/aps.50.73
    [20] LIU XUE-MING, LIU LING, SUN XIAO-HAN, ZHANG MING-DE. THEORETICAL ANALYSIS OF WAVELENGTH CONVERSION FOR CASCADING SECOND-ORDER NONLINE ARITIES IN SILICA FIBER. Acta Physica Sinica, 2000, 49(9): 1792-1797. doi: 10.7498/aps.49.1792
Metrics
  • Abstract views:  6018
  • PDF Downloads:  160
  • Cited By: 0
Publishing process
  • Received Date:  15 June 2016
  • Accepted Date:  06 July 2016
  • Published Online:  05 November 2016

/

返回文章
返回
Baidu
map