-
A highly nonlinear microstructured fiber with single-zero-dispersion wavelength is designed and drawn by reducing the core area in order to observe two groups of four-wave mixing processes by a single pump. The foundational material of the fiber is silica and its cladding is comprised of seven-layer air holes. The air holes are arranged in a hexagonal lattice and the lattice pitch is =2.5 m. The radius of each of the air holes is r=1.03 m. There is just one zero-dispersion wavelength in our considerable wavelength range for the microstructured fiber and the corresponding wavelength D is nearly 0.85 m(D=0.85 m). The basic properties of the fiber including effective refractive index, dispersion coefficient, and nonlinear coefficient are calculated by the finite element method. The effective mode area is 4.4 m2 and the nonlinear coefficient is 0.057 m-1W-1 for the foundation mode near the wavelength of 0.8 m, and the nonlinear coefficient reaches 0.053 m-1W-1 near the zero dispersion wavelength of 0.85 m. In short, the optical fiber has a stable and high nonlinear coefficient in the whole experimental band(0.80-0.83 m), which provides an important guarantee for the occurrence of four-wave mixing double parameter gain process. In addition, the phase mismatch curve is simulated by using the four-wave mixing phase mismatch formulation. Numerical simulation shows that two sets of four-wave mixing processes can occur in the designed fiber. At the normal dispersion wavelengths of 0.800, 0.810 and 0.820 m with different powers, the experimental result shows a significant feature of four gain wavebands located at both sides of the pump wavelength. By comparing experimental data with the phase mismatch curve, we find that the band generation meets four-wave mixing phase matching condition, thus, the simultaneous occurrence of two groups of four-wave mixing processes observed in the experiment is explained in theory. The experimental results are consistent well with the theoretical predictions. This also proves the theoretical predictions that two sets of parametric gain processes and two pairs of signal and idle frequency waves can be generated in PCF. The four-wave mixing effect occurring in the normal dispersion region can be attributed to the contribution of negative fourth-order dispersion to the phase matching process. The present work can provide valuable reference to designing the microstructure fibers and developing the multi-wavelength conversion technology based on four-wave mixing effect. At the same time, this work can also supply guidance for developing the uncommon waveband lasers and broadband light sources.
-
Keywords:
- microstructure fiber /
- four-wave mixing /
- phase matching /
- wavelength conversion
[1] Tanemura T, Goh C S, Kikuchi K, Set S Y 2004 IEEE. Photonic. Technol. Lett. 16 551
[2] Zhang L, Yang B J, Wang Q G, He L 2008 Acta Photon. Sin. 37 2203(in Chinese)[张岚, 杨伯君, 王秋国, 何理2008光子学报37 2203]
[3] Kuang Q Q, Chen Y H, Yan A, Zhang Z X, Nie Y Y, Sang M H, Zhan L 2009 Laser J. 30 36(in Chinese)[况庆强, 陈艳辉, 燕安, 张祖兴, 聂义友, 桑明煌, 詹黎2009激光杂志30 36]
[4] Zhang L, Tong T H, Sega D, Kawamura H, Deng D H, Suzuki T, Ohishi Y 2015 Nonlinear Optics Kauai, USA, July 26-31, 2015 NW4A.32
[5] Liang J Q, Wang J F, Li P, Wang Y C 2013 Chin. J. Lasers 40 0402009(in Chinese)[梁俊强, 王娟芬, 李璞, 王云才2013中国激光40 0402009]
[6] Wang L J, Yan L S, Guo Y H, Wen K H, Chen Z Y, Pan W, Luo B 2013 Acta Opt. Sin. 33 0419002(in Chinese)[王鲁俊, 闫连山, 郭迎辉, 温坤华, 陈智宇, 潘炜, 罗斌2013光学学报33 0419002]
[7] Zhang L, Tuan T H, Sega D, Kawamura H, Deng D H, Suzuki T, Ohishi Y 2015 Opt. Express 23 26299
[8] Zhang L 2014 Ph. D. Dissertation (Beijing:Tsinghua University)(in Chinese)[张磊2014博士学位论文(北京:清华大学)]
[9] Reeves W H, Skryabin D V, Biancalana F, Knight J C, Russell P St J, Omenetto F G, Efimov A, Taylor A J 2003 Nature 424 511
[10] Zhang L, Yang S G, Han Y, Chen H W, Chen M H, Xie S Z 2013 Opt. Commun. 300 22
[11] Koshiba M, Saitoh K 2003 Appl. Opt. 42 6267
[12] Bréchet F, Marcou J, Pagnoux D, Roy P 2000 Opt. Fiber. Technol. 6 181
[13] Malitson I H 1965 J. Opt. Soc. Am. A 55 1205
[14] Lou S Q, Ren G B, Yan F P, Jian S S 2005 Acta Phys. Sin. 54 1229(in Chinese)[娄淑琴, 任国斌, 延凤平, 简水生2005 54 1229]
[15] Kerbage C, Eggleton B 2002 Opt. Express 10 246
[16] Yang T Y, Wang E L, Jiang H M, Hu Z J, Xie K 2015 Opt. Express 23 8329
[17] Yan F P, Li Y F, Wang L, Gong T R, Liu P, Liu Y, Tao P L, Qu M X, Jian S S 2008 Acta Phys. Sin. 57 5735(in Chinese)[延凤平, 李一凡, 王琳, 龚桃荣, 刘鹏, 刘洋, 陶沛琳, 曲美霞, 简水生2008 57 5735]
[18] Harvey J D, Leonhardt R, Coen S, Wong G K L, Knight J C, Wadsworth W J, Russell P St J 2003 Opt. Lett. 28 2225
[19] Agrawal G P 2009 Nonlinear Fiber Optics(4th Ed.) (New York:Elsevier) pp383, 464-467
[20] Li J S, Li S G, Zhao Y Y, Li H, Zhou G Y, Chen H L, Han X M, Liu Q, Han Y, Fan Z K, Zhang W, An G W 2015 IEEE Photon. J. 7 1
[21] Liu X X, Wang S T, Zhao X T, Chen S, Zhou G Y, Wu X J, Li S G, Hou L T 2014 Spectrosc. Spect. Anal. 34 1460(in Chinese)[刘晓旭, 王书涛, 赵兴涛, 陈爽, 周桂耀, 吴希军, 李曙光, 侯蓝田2014光谱学与光谱分析34 1460]
[22] Zhao X T, Liu X X, Wang S T, Wang W, Han Y, Liu Z L, Li S G, Hou L T 2015 Opt. Express 23 27899
[23] Yuan J H, Sang X Z, Yu C X, Xin X J, Zhou G Y, Li S G, Hou L T 2011 Appl. Phys. B 104 117
-
[1] Tanemura T, Goh C S, Kikuchi K, Set S Y 2004 IEEE. Photonic. Technol. Lett. 16 551
[2] Zhang L, Yang B J, Wang Q G, He L 2008 Acta Photon. Sin. 37 2203(in Chinese)[张岚, 杨伯君, 王秋国, 何理2008光子学报37 2203]
[3] Kuang Q Q, Chen Y H, Yan A, Zhang Z X, Nie Y Y, Sang M H, Zhan L 2009 Laser J. 30 36(in Chinese)[况庆强, 陈艳辉, 燕安, 张祖兴, 聂义友, 桑明煌, 詹黎2009激光杂志30 36]
[4] Zhang L, Tong T H, Sega D, Kawamura H, Deng D H, Suzuki T, Ohishi Y 2015 Nonlinear Optics Kauai, USA, July 26-31, 2015 NW4A.32
[5] Liang J Q, Wang J F, Li P, Wang Y C 2013 Chin. J. Lasers 40 0402009(in Chinese)[梁俊强, 王娟芬, 李璞, 王云才2013中国激光40 0402009]
[6] Wang L J, Yan L S, Guo Y H, Wen K H, Chen Z Y, Pan W, Luo B 2013 Acta Opt. Sin. 33 0419002(in Chinese)[王鲁俊, 闫连山, 郭迎辉, 温坤华, 陈智宇, 潘炜, 罗斌2013光学学报33 0419002]
[7] Zhang L, Tuan T H, Sega D, Kawamura H, Deng D H, Suzuki T, Ohishi Y 2015 Opt. Express 23 26299
[8] Zhang L 2014 Ph. D. Dissertation (Beijing:Tsinghua University)(in Chinese)[张磊2014博士学位论文(北京:清华大学)]
[9] Reeves W H, Skryabin D V, Biancalana F, Knight J C, Russell P St J, Omenetto F G, Efimov A, Taylor A J 2003 Nature 424 511
[10] Zhang L, Yang S G, Han Y, Chen H W, Chen M H, Xie S Z 2013 Opt. Commun. 300 22
[11] Koshiba M, Saitoh K 2003 Appl. Opt. 42 6267
[12] Bréchet F, Marcou J, Pagnoux D, Roy P 2000 Opt. Fiber. Technol. 6 181
[13] Malitson I H 1965 J. Opt. Soc. Am. A 55 1205
[14] Lou S Q, Ren G B, Yan F P, Jian S S 2005 Acta Phys. Sin. 54 1229(in Chinese)[娄淑琴, 任国斌, 延凤平, 简水生2005 54 1229]
[15] Kerbage C, Eggleton B 2002 Opt. Express 10 246
[16] Yang T Y, Wang E L, Jiang H M, Hu Z J, Xie K 2015 Opt. Express 23 8329
[17] Yan F P, Li Y F, Wang L, Gong T R, Liu P, Liu Y, Tao P L, Qu M X, Jian S S 2008 Acta Phys. Sin. 57 5735(in Chinese)[延凤平, 李一凡, 王琳, 龚桃荣, 刘鹏, 刘洋, 陶沛琳, 曲美霞, 简水生2008 57 5735]
[18] Harvey J D, Leonhardt R, Coen S, Wong G K L, Knight J C, Wadsworth W J, Russell P St J 2003 Opt. Lett. 28 2225
[19] Agrawal G P 2009 Nonlinear Fiber Optics(4th Ed.) (New York:Elsevier) pp383, 464-467
[20] Li J S, Li S G, Zhao Y Y, Li H, Zhou G Y, Chen H L, Han X M, Liu Q, Han Y, Fan Z K, Zhang W, An G W 2015 IEEE Photon. J. 7 1
[21] Liu X X, Wang S T, Zhao X T, Chen S, Zhou G Y, Wu X J, Li S G, Hou L T 2014 Spectrosc. Spect. Anal. 34 1460(in Chinese)[刘晓旭, 王书涛, 赵兴涛, 陈爽, 周桂耀, 吴希军, 李曙光, 侯蓝田2014光谱学与光谱分析34 1460]
[22] Zhao X T, Liu X X, Wang S T, Wang W, Han Y, Liu Z L, Li S G, Hou L T 2015 Opt. Express 23 27899
[23] Yuan J H, Sang X Z, Yu C X, Xin X J, Zhou G Y, Li S G, Hou L T 2011 Appl. Phys. B 104 117
Catalog
Metrics
- Abstract views: 6018
- PDF Downloads: 160
- Cited By: 0