搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单负材料异质结构中损耗诱导的场局域增强和光学双稳态

董丽娟 薛春华 孙勇 邓富胜 石云龙

引用本文:
Citation:

单负材料异质结构中损耗诱导的场局域增强和光学双稳态

董丽娟, 薛春华, 孙勇, 邓富胜, 石云龙

Loss-induced localized field enhancement and optical bistable state in heterostructure containing single-negative materials

Dong Li-Juan, Xue Chun-Hua, Sun Yong, Deng Fu-Sheng, Shi Yun-Long
PDF
导出引用
  • 光学双稳态的阈值取决于非线性材料中的场局域程度, 场局域越强阈值越低. 而材料的损耗是影响场局域强弱的重要因素. 之前, 人们普遍认为, 增加损耗会削弱场局域, 不利于降低阈值. 本文研究了由磁单负材料和电单负材料组成的异质结构中光学双稳态现象, 发现随着损耗的增大, 其阈值可以呈现先降后升的非单调变化. 进一步研究表明, 异质结构界面处的电磁场强度随着损耗增大呈现先降后升的非单调变化, 即增加损耗也有可能增强场局域. 研究结果揭示了场局域程度与材料损耗之间的非单调依赖关系, 为设计开发非线性功能器件提供了新的思路.
    Permittivity depends on the electric field intensity in a nonlinear material, and it changes with the incident intensity of the electromagnetic wave. This phenomenon leads to the occurrence of optical bistability. The optical bistable threshold value depends on the localized degree of electromagnetic field in the nonlinear material, and the stronger the localized field, the lower the threshold value is. However, the loss of material is one of the important factors influencing the strength of the local field. It is commonly believed that the loss is not conducible to reducing the threshold value because increased loss can weaken the localized degree of fields. For the lossy single-negative metamaterial, the transmission is nonmonotonic as the loss varies. That is to say, the transmission first decreases and then increases in the lossy single-negative metamaterial. Therefore, the nonlinear transmission in the lossy single-negative metamaterial may lead to novel physical phenomena. Permeability-negative material and permittivity-negative material are two kinds of different single-negative metamaterials. In this paper, the optical bistable phenomena in the heterostructure of permeability-negative material and permittivity-negative material are studied by using the transfer matrix method. Here, the permittivity-negative material is nonlinear material. The results show that the optical bistable threshold value first increases and then falls down as the loss increases. The variance of the localized electromagnetic field at the interface between the permeability-negative layer and the permittivity-negative layer at the discussed frequency is discussed in the present paper to understand the nonmonotonic phenomenon. Further studies indicate that the nonmonotonic localized electromagnetic field is also presented at the interface between the permeability-negative layer and permittivity-negative layer. That is to say, the enhancement of the localized field can be obtained when the loss is increased, which results in the nonmonotonic optical bistable threshold value in the heterosturcture composed of the single-negative metamaterials. In the final analysis, the abnormal phenomenon is induced by the loss in the single-negative metamaterial, which is the special property of single-negative metamaterial.
      通信作者: 孙勇, yongsun@tongji.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11274207, 11504210, 11504211, 11264003, 11204217)、山西省科技攻关项目(批准号: 2015031002-2)、山西省自然科学基金(批准号: 2013011007-2, 2013021010-5)和大同市科技攻关项目(批准号: 2015015, 201308, 201422-3)资助的课题.
      Corresponding author: Sun Yong, yongsun@tongji.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274207, 11504210, 11504211, 11264003, 11204217), the Science and Technology Project of Shanxi Province, China (Grant No. 2015031002-2), the Natural Science Foundation of Shanxi Province, China (Grant Nos. 2013011007-2, 2013021010-5), and the Science and Technology Project of Datong, Shanxi Province, China (Grant Nos. 2015015, 201308, 201422-3).
    [1]

    Shen B, Polson R, Menon R 2015 Opt. Lett. 40 5750

    [2]

    Bhaskar M, Johari E, Akhter Z, Akhtar M J 2016 Microw. Opt. Technol. Lett. 58 233

    [3]

    Wu H W, Wang F, Dong Y Q, Shu F Z, Zhang K, Peng R W, Xiong X, Wang M 2015 Opt. Express 23 32087

    [4]

    Al A Engheta N 2003 IEEE Trans. Antennas Propagat. 51 2558

    [5]

    Huang L Z, Xiao Y, Wen J H, Yang H B, Wen X S 2016 Chin. Phys. B 25 024302

    [6]

    Ding G W, Liu S B, Zhang H F, Kong X K, Li H M, Li B X, Liu S Y, Li H 2015 Chin. Phys. B 24 118103

    [7]

    Chen X, Ma H F, Zou X Y, Jiang W X, Cui T J 2011 J. Appl. Phys. 110 044904

    [8]

    Jiang Z H, Yun S, Lin L, Bosssrd J A, Werner D H, Mayer T S {2013 Sci. Rep. 3 1571

    [9]

    Yun S, Jiang Z H, Xu Q, Liu Z W, Werner D H, Mayer T S 2012 Acs. Nano 6 4475

    [10]

    Tan S Y, Zhai T, Zhang R K, Lu D, Wang W, Ji C 2015 Chin. Phys. B 24 064211

    [11]

    Sun L, Yu K W 2012 Appl. Phys. Lett. 100 261903

    [12]

    Sun L, Feng S, Yang X D 2012 Appl. Phys. Lett. 101 241101

    [13]

    Rodrigo S G, Garcia-Vidal F J, Martin-Moreno L 2013 Phys. Rev. B 88 155126

    [14]

    Dang K Z, Shi J M, Wang J C, Lin Z D, Wang Q C 2015 Chin. Phys. B 24 104104

    [15]

    Yu Y Y, Li X Y, Sun B, He K P 2015 Chin. Phys. B 24 068702

    [16]

    Feng S 2012 Phys. Rev. Lett. 108 193904

    [17]

    Adato R, Artar A, Erramilli S, Altug H 2013 Nano Lett. 13 2584

    [18]

    Feng S, Halterman K 2012 Phys. Rev. B 86 165103

    [19]

    Dong L J, Du G Q, Jiang H T, Chen H, Shi Y L 2009 J. Opt. Soc. Am. B 26 1091

    [20]

    Liu Y H, Jiang H T, Chen H, Shi Y L 2012 Eur. Phys. J. B 85 11

    [21]

    Lin W H, Wu C J, Chang S J 2010 Prog. Electromagn. Res. 107 253

    [22]

    Lin W H, Wu C J, Chang S J 2010 Solid State Commun. 150 1729

    [23]

    Xue C H, Jiang H T, Chen H 2011 Opt. Lett. 36 855

    [24]

    Tai T, Ghamsari B G, Bieler T, Anlage S M 2015 Phys. Rev. B 92 134513

    [25]

    Sanada A, Caloz C, Itoh T 2004 IEEE Microw. Wirel. Compon. Lett. 14 68

    [26]

    Zhang L W, Wang Y Z, He L, Xu J P 2010 Acta Phys. Sin. 59 6106 (in Chinese) [张利伟, 王佑贞, 赫丽, 许静平 2010 59 6106]

    [27]

    Deng X H, Liu N H, Liu G Q 2007 Acta Phys. Sin. 56 7280 (in Chinese) [邓新华, 刘念华, 刘根泉 2007 56 7280]

  • [1]

    Shen B, Polson R, Menon R 2015 Opt. Lett. 40 5750

    [2]

    Bhaskar M, Johari E, Akhter Z, Akhtar M J 2016 Microw. Opt. Technol. Lett. 58 233

    [3]

    Wu H W, Wang F, Dong Y Q, Shu F Z, Zhang K, Peng R W, Xiong X, Wang M 2015 Opt. Express 23 32087

    [4]

    Al A Engheta N 2003 IEEE Trans. Antennas Propagat. 51 2558

    [5]

    Huang L Z, Xiao Y, Wen J H, Yang H B, Wen X S 2016 Chin. Phys. B 25 024302

    [6]

    Ding G W, Liu S B, Zhang H F, Kong X K, Li H M, Li B X, Liu S Y, Li H 2015 Chin. Phys. B 24 118103

    [7]

    Chen X, Ma H F, Zou X Y, Jiang W X, Cui T J 2011 J. Appl. Phys. 110 044904

    [8]

    Jiang Z H, Yun S, Lin L, Bosssrd J A, Werner D H, Mayer T S {2013 Sci. Rep. 3 1571

    [9]

    Yun S, Jiang Z H, Xu Q, Liu Z W, Werner D H, Mayer T S 2012 Acs. Nano 6 4475

    [10]

    Tan S Y, Zhai T, Zhang R K, Lu D, Wang W, Ji C 2015 Chin. Phys. B 24 064211

    [11]

    Sun L, Yu K W 2012 Appl. Phys. Lett. 100 261903

    [12]

    Sun L, Feng S, Yang X D 2012 Appl. Phys. Lett. 101 241101

    [13]

    Rodrigo S G, Garcia-Vidal F J, Martin-Moreno L 2013 Phys. Rev. B 88 155126

    [14]

    Dang K Z, Shi J M, Wang J C, Lin Z D, Wang Q C 2015 Chin. Phys. B 24 104104

    [15]

    Yu Y Y, Li X Y, Sun B, He K P 2015 Chin. Phys. B 24 068702

    [16]

    Feng S 2012 Phys. Rev. Lett. 108 193904

    [17]

    Adato R, Artar A, Erramilli S, Altug H 2013 Nano Lett. 13 2584

    [18]

    Feng S, Halterman K 2012 Phys. Rev. B 86 165103

    [19]

    Dong L J, Du G Q, Jiang H T, Chen H, Shi Y L 2009 J. Opt. Soc. Am. B 26 1091

    [20]

    Liu Y H, Jiang H T, Chen H, Shi Y L 2012 Eur. Phys. J. B 85 11

    [21]

    Lin W H, Wu C J, Chang S J 2010 Prog. Electromagn. Res. 107 253

    [22]

    Lin W H, Wu C J, Chang S J 2010 Solid State Commun. 150 1729

    [23]

    Xue C H, Jiang H T, Chen H 2011 Opt. Lett. 36 855

    [24]

    Tai T, Ghamsari B G, Bieler T, Anlage S M 2015 Phys. Rev. B 92 134513

    [25]

    Sanada A, Caloz C, Itoh T 2004 IEEE Microw. Wirel. Compon. Lett. 14 68

    [26]

    Zhang L W, Wang Y Z, He L, Xu J P 2010 Acta Phys. Sin. 59 6106 (in Chinese) [张利伟, 王佑贞, 赫丽, 许静平 2010 59 6106]

    [27]

    Deng X H, Liu N H, Liu G Q 2007 Acta Phys. Sin. 56 7280 (in Chinese) [邓新华, 刘念华, 刘根泉 2007 56 7280]

  • [1] 李昀衡, 喻可, 朱天宇, 于桐, 单思超, 谷亚舟, 李志曈. 拓扑层结构中的光学双稳态及其在光神经网络中的应用.  , 2024, 73(16): 164208. doi: 10.7498/aps.73.20240569
    [2] 胡生润, 季学强, 王进进, 阎结昀, 张天悦, 李培刚. 基于Ga2O3-SiC-Ag多层结构的介电常数近零超低开关阈值光学双稳态器件.  , 2024, 73(5): 054201. doi: 10.7498/aps.73.20231534
    [3] 陈华俊. 基于石墨烯光力系统的非线性光学效应及非线性光学质量传感.  , 2020, 69(13): 134203. doi: 10.7498/aps.69.20191745
    [4] 戴震飞, 姜文帆, 王玲, 陈明阳, 高永锋, 任乃飞. 基于高折射率液体填充的花瓣形微结构光纤可调滤模特性.  , 2019, 68(8): 084206. doi: 10.7498/aps.68.20181890
    [5] 顾金桃, 盛美萍. 稳态损耗因子的衰减法识别研究.  , 2015, 64(18): 184301. doi: 10.7498/aps.64.184301
    [6] 程兰, 罗兴, 韦会峰, 李海清, 彭景刚, 戴能利, 李进延. 1550 nm低损耗单模全固态光子带隙光纤研究.  , 2014, 63(7): 074210. doi: 10.7498/aps.63.074210
    [7] 杨金金, 李慧军, 文文, 黄国翔. n型主动拉曼增益原子介质中的光学双稳态.  , 2012, 61(22): 224204. doi: 10.7498/aps.61.224204
    [8] 闫海峰, 俞重远, 田宏达, 刘玉敏, 韩利红. 八角光子晶体光纤传输特性与非线性特性研究.  , 2010, 59(5): 3273-3277. doi: 10.7498/aps.59.3273
    [9] 刘均海, 万勇, 韩文娟, 杨红卫, 张怀金, 王继扬, Petrov Valentin. 掺Yb钒酸盐晶体激光振荡中的光学双稳态现象研究.  , 2010, 59(1): 293-299. doi: 10.7498/aps.59.293
    [10] 刘冬梅, 韩鹏. 含单负特异材料一维无序扰动周期结构中的光子局域特性研究.  , 2010, 59(10): 7066-7072. doi: 10.7498/aps.59.7066
    [11] 毛庆和, 冯素娟, 蒋 建, 朱宗玖, 刘文清. 基于FLM的L波段双波长EDFL的双稳态变换.  , 2007, 56(1): 296-300. doi: 10.7498/aps.56.296
    [12] 陈 峻, 刘正东, 尤素萍. 准Λ型四能级原子系统中的烧孔和光学双稳现象.  , 2006, 55(12): 6410-6413. doi: 10.7498/aps.55.6410
    [13] 李利平, 刘涛, 李刚, 张天才, 王军民. 超高精细度光学腔中低损耗的测量.  , 2004, 53(5): 1401-1405. doi: 10.7498/aps.53.1401
    [14] 王惠, 蓝文广, 林位株, 莫党. 基于高聚物光诱导激子漂白的无腔光学双稳态.  , 1997, 46(8): 1493-1499. doi: 10.7498/aps.46.1493
    [15] 杨援, 戴建华, 张洪钧. 光学双稳态离散模型的动力学行为.  , 1994, 43(5): 699-706. doi: 10.7498/aps.43.699
    [16] 汪映海, 胡成生, 汪志诚. 吸收型双光子光学双稳态的时间行为.  , 1992, 41(10): 1598-1604. doi: 10.7498/aps.41.1598
    [17] 王鹏业, 张洪钧, 戴建华. 光学双稳态和混沌运动中的临界现象.  , 1985, 34(10): 1233-1240. doi: 10.7498/aps.34.1233
    [18] 戴建华, 张洪钧, 王鹏业, 金朝鼎. 液晶混合光学双稳态的分叉图.  , 1985, 34(8): 992-999. doi: 10.7498/aps.34.992
    [19] 程瑞华, 栾绍金, 沈红卫, 谭维翰. InSb的光学双稳态.  , 1985, 34(9): 1212-1214. doi: 10.7498/aps.34.1212
    [20] 朱诗尧. 双光子光学双稳态的研究.  , 1984, 33(1): 16-24. doi: 10.7498/aps.33.16
计量
  • 文章访问数:  5871
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-20
  • 修回日期:  2016-03-04
  • 刊出日期:  2016-06-05

/

返回文章
返回
Baidu
map