-
Grating based X-ray imaging technology is a coherent imaging technique that bears tremendous potential in three-dimensional tomographic imaging of weak absorption contrast specimens. Three kinds of contrast information including absorption, phase and scattering can be retrieved separately based on a single set of raw projections. However, the grating based X-ray imaging with the conventional phase-retrieval method using the conventional phase-stepping approach and filtered back projection (FBP) reconstruction algorithm require large amounts of raw data, so that long exposure time and large amounts of radiation dose is accepted by the sample. According to the traditional grating based X-ray imaging system, we propose a low dose, fast, multi-contrast CT reconstruction approach based on the iterative reconstruction algorithm that optimizes dose efficiency but does not share the main limitations of other reported methods. Prior to reconstruction, firstly, the projections are acquired with the phase stepping approach and multi-contrast projections are retrieved from the raw data by conventional retrieval algorithm. Then the rotational variable differential phase projections are converted to rotational invariable projections by means of decomposing the differential phase projections into the rotational invariable projections in two mutually perpendicular derivative directions via the transformation of coordinates. Finally, the absorption, phase and scattering information are reconstructed with the iterative reconstruction algorithm and the phase is retrieved based on the fast Fourier transform (FFT). We validated and assessed the phase reconstruction approach with a numerical simulation on a phase Shepp-Logan phantom. The experiment was performed at the X-ray imaging and biomedical application beam line (BL-13W) in the Shanghai Synchrotron Radiation Facility (SSRF) where 20 keV X-ray from a Si(111) monochromator is emitted. The X-ray interferometer was positioned at 34 m from the Wiggler source. The images were recorded with a scintillator/lens-coupled CCD camera with 2048 pixel2048 pixel resolution and an effective pixel size of 9 m. The numerical tests and the experimental results demonstrate that, for the small radiation dose deposited in the sample, the iterative reconstruction algorithm provides phase reconstructions of better quality and higher signal to noise ratio than the conventional FBP reconstruction algorithm, and also provides the multi-contrast 3D images, including absorption image, phase image and scattering image. This development is of particular interest for applications where the samples need inspecting under low dose and high speed conditions, and will play an important role in the nondestructive and quantitative imaging in the industry, biomedical and medical diagnosis fields.
[1] Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Brnnimann C, Grnzweig C, David C 2008Nat.Mat. 7 134
[2] Momose A, Yashiro W, Maikusa H, Takeda Y 2009Opt.Express 17 12540
[3] Wen H H, Bennett E E, Kopace R, Stein A F, Pai V 2010Opt.Express 35 1932
[4] Zhu P P, Zhang K, Wang Z L, Liu Y J, Liu X S, Wu Z Y, McDonald S A, Marone F, Stampanoni M 2010Proc.Natl.Acad.Sci. 107 13576
[5] Jensen T H, Bech M, Zanette I, Weitkamp T, David C, Deyhle H, Rutishauser S, Reznikova E, Mohr J, Feidenhans'l R, Pfeiffer F 2010Phys.Rev.B 82 214103
[6] Zanette I, Bech M, Pfeiffer F, Weitkamp T 2011Appl.Phys.Lett. 98 094101
[7] Zanette I, Bech M, Rack A, Le Duc G, Tafforeau P, David C, Mohr J, Pfeiffer F, Weitkamp T 2012Proc.Natl.Acad.Sci. 109 10199
[8] Chen B, Zhu P P, Liu Y J, Wang J Y, Yuan Q X, Huang W X, Ming H, Wu Z Y 2008Acta Phys.Sin. 57 1576(in Chinese)[陈博, 朱佩平, 刘宜晋, 王寯越, 袁清习, 黄万霞, 明海, 吴自玉2008 57 1576]
[9] Talbot H F 1936Philos.Mag 9 401
[10] Qi J C, Ren Y Q, Du G H, Chen R C, Wang Y D, He Y, Xiao T Q 2013Acta Opt.Sin. 33 1034001(in Chinese)[戚俊成, 任玉琦, 杜国浩, 陈荣昌, 王玉丹, 和友, 肖体乔2013光学学报33 1034001]
[11] Bech M, Jensen T H, Bunk O, Donath T, David C, Weitkamp T, Le Duc G, Bravin A, Cloetens P, Pfeiffer F 2010Zeitschrift Fur Medizinische Physik 20 7
[12] Momose A, Kawamoto S, Koyama I, Suzuki Y 2004Developments in X-Ray Tomography IV 5535 352
[13] Zhu P P, Wang J Y, Yuan Q X, Huang W X, Shu H, Gao B, Hu T D, Wu Z Y 2005Appl.Phys.Lett. 87 264101
[14] Yang F Q, Zhang D H, Huang K D Wang K, Xu Z 2014Acta Phys.Sin. 63 058701(in Chinese)[杨富强, 张定华, 黄魁东, 王鹍, 徐哲2014 63 058701]
[15] Kottler C, David C, Pfeiffer F, Bunk O 2007Opt.Express 15 1175
[16] Arnison M R, Larkin K G, Sheppard C J R, Smith N I, Cogswell C J 2004J Microsc. 214 7
[17] Xiao T Q, Xie H L, Deng B, Du G H, Chen R C 2014Acta Opt.Sin. 34 0100001(in Chinese)[肖体乔, 谢红兰, 邓彪, 杜国浩, 陈荣昌2014光学学报34 0100001]
[18] Qi J C, Ye L L, Chen R C, Xie H L, Ren Y Q, Du G H, Deng B, Xiao T Q 2014Acta Phys.Sin. 63 104202(in Chinese)[戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔2014 63 104202]
-
[1] Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Brnnimann C, Grnzweig C, David C 2008Nat.Mat. 7 134
[2] Momose A, Yashiro W, Maikusa H, Takeda Y 2009Opt.Express 17 12540
[3] Wen H H, Bennett E E, Kopace R, Stein A F, Pai V 2010Opt.Express 35 1932
[4] Zhu P P, Zhang K, Wang Z L, Liu Y J, Liu X S, Wu Z Y, McDonald S A, Marone F, Stampanoni M 2010Proc.Natl.Acad.Sci. 107 13576
[5] Jensen T H, Bech M, Zanette I, Weitkamp T, David C, Deyhle H, Rutishauser S, Reznikova E, Mohr J, Feidenhans'l R, Pfeiffer F 2010Phys.Rev.B 82 214103
[6] Zanette I, Bech M, Pfeiffer F, Weitkamp T 2011Appl.Phys.Lett. 98 094101
[7] Zanette I, Bech M, Rack A, Le Duc G, Tafforeau P, David C, Mohr J, Pfeiffer F, Weitkamp T 2012Proc.Natl.Acad.Sci. 109 10199
[8] Chen B, Zhu P P, Liu Y J, Wang J Y, Yuan Q X, Huang W X, Ming H, Wu Z Y 2008Acta Phys.Sin. 57 1576(in Chinese)[陈博, 朱佩平, 刘宜晋, 王寯越, 袁清习, 黄万霞, 明海, 吴自玉2008 57 1576]
[9] Talbot H F 1936Philos.Mag 9 401
[10] Qi J C, Ren Y Q, Du G H, Chen R C, Wang Y D, He Y, Xiao T Q 2013Acta Opt.Sin. 33 1034001(in Chinese)[戚俊成, 任玉琦, 杜国浩, 陈荣昌, 王玉丹, 和友, 肖体乔2013光学学报33 1034001]
[11] Bech M, Jensen T H, Bunk O, Donath T, David C, Weitkamp T, Le Duc G, Bravin A, Cloetens P, Pfeiffer F 2010Zeitschrift Fur Medizinische Physik 20 7
[12] Momose A, Kawamoto S, Koyama I, Suzuki Y 2004Developments in X-Ray Tomography IV 5535 352
[13] Zhu P P, Wang J Y, Yuan Q X, Huang W X, Shu H, Gao B, Hu T D, Wu Z Y 2005Appl.Phys.Lett. 87 264101
[14] Yang F Q, Zhang D H, Huang K D Wang K, Xu Z 2014Acta Phys.Sin. 63 058701(in Chinese)[杨富强, 张定华, 黄魁东, 王鹍, 徐哲2014 63 058701]
[15] Kottler C, David C, Pfeiffer F, Bunk O 2007Opt.Express 15 1175
[16] Arnison M R, Larkin K G, Sheppard C J R, Smith N I, Cogswell C J 2004J Microsc. 214 7
[17] Xiao T Q, Xie H L, Deng B, Du G H, Chen R C 2014Acta Opt.Sin. 34 0100001(in Chinese)[肖体乔, 谢红兰, 邓彪, 杜国浩, 陈荣昌2014光学学报34 0100001]
[18] Qi J C, Ye L L, Chen R C, Xie H L, Ren Y Q, Du G H, Deng B, Xiao T Q 2014Acta Phys.Sin. 63 104202(in Chinese)[戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔2014 63 104202]
Catalog
Metrics
- Abstract views: 7592
- PDF Downloads: 321
- Cited By: 0