Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Grating based X-ray phase contrast CT imaging with iterative reconstruction algorithm

Qi Jun-Cheng Chen Rong-Chang Liu Bin Chen Ping Du Guo-Hao Xiao Ti-Qiao

Citation:

Grating based X-ray phase contrast CT imaging with iterative reconstruction algorithm

Qi Jun-Cheng, Chen Rong-Chang, Liu Bin, Chen Ping, Du Guo-Hao, Xiao Ti-Qiao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Grating based X-ray imaging technology is a coherent imaging technique that bears tremendous potential in three-dimensional tomographic imaging of weak absorption contrast specimens. Three kinds of contrast information including absorption, phase and scattering can be retrieved separately based on a single set of raw projections. However, the grating based X-ray imaging with the conventional phase-retrieval method using the conventional phase-stepping approach and filtered back projection (FBP) reconstruction algorithm require large amounts of raw data, so that long exposure time and large amounts of radiation dose is accepted by the sample. According to the traditional grating based X-ray imaging system, we propose a low dose, fast, multi-contrast CT reconstruction approach based on the iterative reconstruction algorithm that optimizes dose efficiency but does not share the main limitations of other reported methods. Prior to reconstruction, firstly, the projections are acquired with the phase stepping approach and multi-contrast projections are retrieved from the raw data by conventional retrieval algorithm. Then the rotational variable differential phase projections are converted to rotational invariable projections by means of decomposing the differential phase projections into the rotational invariable projections in two mutually perpendicular derivative directions via the transformation of coordinates. Finally, the absorption, phase and scattering information are reconstructed with the iterative reconstruction algorithm and the phase is retrieved based on the fast Fourier transform (FFT). We validated and assessed the phase reconstruction approach with a numerical simulation on a phase Shepp-Logan phantom. The experiment was performed at the X-ray imaging and biomedical application beam line (BL-13W) in the Shanghai Synchrotron Radiation Facility (SSRF) where 20 keV X-ray from a Si(111) monochromator is emitted. The X-ray interferometer was positioned at 34 m from the Wiggler source. The images were recorded with a scintillator/lens-coupled CCD camera with 2048 pixel2048 pixel resolution and an effective pixel size of 9 m. The numerical tests and the experimental results demonstrate that, for the small radiation dose deposited in the sample, the iterative reconstruction algorithm provides phase reconstructions of better quality and higher signal to noise ratio than the conventional FBP reconstruction algorithm, and also provides the multi-contrast 3D images, including absorption image, phase image and scattering image. This development is of particular interest for applications where the samples need inspecting under low dose and high speed conditions, and will play an important role in the nondestructive and quantitative imaging in the industry, biomedical and medical diagnosis fields.
      Corresponding author: Qi Jun-Cheng, qijuncheng@nuc.edu.cn;tqxiao@sinap.ac.cn ; Xiao Ti-Qiao, qijuncheng@nuc.edu.cn;tqxiao@sinap.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11375257, 61301259, U1232205), the Foundation of North University of China (Grant No. 2015110246), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2015021099).
    [1]

    Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Brnnimann C, Grnzweig C, David C 2008Nat.Mat. 7 134

    [2]

    Momose A, Yashiro W, Maikusa H, Takeda Y 2009Opt.Express 17 12540

    [3]

    Wen H H, Bennett E E, Kopace R, Stein A F, Pai V 2010Opt.Express 35 1932

    [4]

    Zhu P P, Zhang K, Wang Z L, Liu Y J, Liu X S, Wu Z Y, McDonald S A, Marone F, Stampanoni M 2010Proc.Natl.Acad.Sci. 107 13576

    [5]

    Jensen T H, Bech M, Zanette I, Weitkamp T, David C, Deyhle H, Rutishauser S, Reznikova E, Mohr J, Feidenhans'l R, Pfeiffer F 2010Phys.Rev.B 82 214103

    [6]

    Zanette I, Bech M, Pfeiffer F, Weitkamp T 2011Appl.Phys.Lett. 98 094101

    [7]

    Zanette I, Bech M, Rack A, Le Duc G, Tafforeau P, David C, Mohr J, Pfeiffer F, Weitkamp T 2012Proc.Natl.Acad.Sci. 109 10199

    [8]

    Chen B, Zhu P P, Liu Y J, Wang J Y, Yuan Q X, Huang W X, Ming H, Wu Z Y 2008Acta Phys.Sin. 57 1576(in Chinese)[陈博, 朱佩平, 刘宜晋, 王寯越, 袁清习, 黄万霞, 明海, 吴自玉2008 57 1576]

    [9]

    Talbot H F 1936Philos.Mag 9 401

    [10]

    Qi J C, Ren Y Q, Du G H, Chen R C, Wang Y D, He Y, Xiao T Q 2013Acta Opt.Sin. 33 1034001(in Chinese)[戚俊成, 任玉琦, 杜国浩, 陈荣昌, 王玉丹, 和友, 肖体乔2013光学学报33 1034001]

    [11]

    Bech M, Jensen T H, Bunk O, Donath T, David C, Weitkamp T, Le Duc G, Bravin A, Cloetens P, Pfeiffer F 2010Zeitschrift Fur Medizinische Physik 20 7

    [12]

    Momose A, Kawamoto S, Koyama I, Suzuki Y 2004Developments in X-Ray Tomography IV 5535 352

    [13]

    Zhu P P, Wang J Y, Yuan Q X, Huang W X, Shu H, Gao B, Hu T D, Wu Z Y 2005Appl.Phys.Lett. 87 264101

    [14]

    Yang F Q, Zhang D H, Huang K D Wang K, Xu Z 2014Acta Phys.Sin. 63 058701(in Chinese)[杨富强, 张定华, 黄魁东, 王鹍, 徐哲2014 63 058701]

    [15]

    Kottler C, David C, Pfeiffer F, Bunk O 2007Opt.Express 15 1175

    [16]

    Arnison M R, Larkin K G, Sheppard C J R, Smith N I, Cogswell C J 2004J Microsc. 214 7

    [17]

    Xiao T Q, Xie H L, Deng B, Du G H, Chen R C 2014Acta Opt.Sin. 34 0100001(in Chinese)[肖体乔, 谢红兰, 邓彪, 杜国浩, 陈荣昌2014光学学报34 0100001]

    [18]

    Qi J C, Ye L L, Chen R C, Xie H L, Ren Y Q, Du G H, Deng B, Xiao T Q 2014Acta Phys.Sin. 63 104202(in Chinese)[戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔2014 63 104202]

  • [1]

    Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Brnnimann C, Grnzweig C, David C 2008Nat.Mat. 7 134

    [2]

    Momose A, Yashiro W, Maikusa H, Takeda Y 2009Opt.Express 17 12540

    [3]

    Wen H H, Bennett E E, Kopace R, Stein A F, Pai V 2010Opt.Express 35 1932

    [4]

    Zhu P P, Zhang K, Wang Z L, Liu Y J, Liu X S, Wu Z Y, McDonald S A, Marone F, Stampanoni M 2010Proc.Natl.Acad.Sci. 107 13576

    [5]

    Jensen T H, Bech M, Zanette I, Weitkamp T, David C, Deyhle H, Rutishauser S, Reznikova E, Mohr J, Feidenhans'l R, Pfeiffer F 2010Phys.Rev.B 82 214103

    [6]

    Zanette I, Bech M, Pfeiffer F, Weitkamp T 2011Appl.Phys.Lett. 98 094101

    [7]

    Zanette I, Bech M, Rack A, Le Duc G, Tafforeau P, David C, Mohr J, Pfeiffer F, Weitkamp T 2012Proc.Natl.Acad.Sci. 109 10199

    [8]

    Chen B, Zhu P P, Liu Y J, Wang J Y, Yuan Q X, Huang W X, Ming H, Wu Z Y 2008Acta Phys.Sin. 57 1576(in Chinese)[陈博, 朱佩平, 刘宜晋, 王寯越, 袁清习, 黄万霞, 明海, 吴自玉2008 57 1576]

    [9]

    Talbot H F 1936Philos.Mag 9 401

    [10]

    Qi J C, Ren Y Q, Du G H, Chen R C, Wang Y D, He Y, Xiao T Q 2013Acta Opt.Sin. 33 1034001(in Chinese)[戚俊成, 任玉琦, 杜国浩, 陈荣昌, 王玉丹, 和友, 肖体乔2013光学学报33 1034001]

    [11]

    Bech M, Jensen T H, Bunk O, Donath T, David C, Weitkamp T, Le Duc G, Bravin A, Cloetens P, Pfeiffer F 2010Zeitschrift Fur Medizinische Physik 20 7

    [12]

    Momose A, Kawamoto S, Koyama I, Suzuki Y 2004Developments in X-Ray Tomography IV 5535 352

    [13]

    Zhu P P, Wang J Y, Yuan Q X, Huang W X, Shu H, Gao B, Hu T D, Wu Z Y 2005Appl.Phys.Lett. 87 264101

    [14]

    Yang F Q, Zhang D H, Huang K D Wang K, Xu Z 2014Acta Phys.Sin. 63 058701(in Chinese)[杨富强, 张定华, 黄魁东, 王鹍, 徐哲2014 63 058701]

    [15]

    Kottler C, David C, Pfeiffer F, Bunk O 2007Opt.Express 15 1175

    [16]

    Arnison M R, Larkin K G, Sheppard C J R, Smith N I, Cogswell C J 2004J Microsc. 214 7

    [17]

    Xiao T Q, Xie H L, Deng B, Du G H, Chen R C 2014Acta Opt.Sin. 34 0100001(in Chinese)[肖体乔, 谢红兰, 邓彪, 杜国浩, 陈荣昌2014光学学报34 0100001]

    [18]

    Qi J C, Ye L L, Chen R C, Xie H L, Ren Y Q, Du G H, Deng B, Xiao T Q 2014Acta Phys.Sin. 63 104202(in Chinese)[戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔2014 63 104202]

  • [1] Huang Yu-Hang, Chen Li-Xiang. Fractional Fourier transform imaging based on untrained neural networks. Acta Physica Sinica, 2024, 73(9): 094201. doi: 10.7498/aps.73.20240050
    [2] Qi Nai-Jie, He Xiao-Liang, Wu Li-Qing, Liu Cheng, Zhu Jian-Qiang. Effect of detector photoelectric parameters on ptychographic iterative engine. Acta Physica Sinica, 2023, 72(15): 154202. doi: 10.7498/aps.72.20230603
    [3] Wang Zi-Shuo, Liu Lei, Liu Chen-Bo, Liu Ke, Zhong Zhi, Shan Ming-Guang. Fast phase unwrapping using digital differentiation-integration method. Acta Physica Sinica, 2023, 72(18): 184201. doi: 10.7498/aps.72.20230473
    [4] Ma Yong-Jun, Li Rui-Xuan, Li Kui, Zhang Guang-Yin, Niu Jin, Ma Yun-Feng, Ke Chang-Jun, Bao Jie, Chen Ying-Shuang, Lü Chun, Li Jie, Fan Zhong-Wei, Zhang Xiao-Shi. Three-dimensional nano-coherent diffraction imaging technology based on high order harmonic X-ray sources. Acta Physica Sinica, 2022, 71(16): 164205. doi: 10.7498/aps.71.20220976
    [5] Shan Ming-Guang, Liu Xiang-Yu, Pang Cheng, Zhong Zhi, Yu Lei, Liu Bin, Liu Lei. Off-axis digital holographic decarrier phase recovery algorithm combined with linear regression. Acta Physica Sinica, 2022, 71(4): 044202. doi: 10.7498/aps.71.20211509
    [6] Zhou Jing, Zhang Xiao-Fang, Zhao Yan-Geng. Phase retrieval wavefront sensing based on image fusion and convolutional neural network. Acta Physica Sinica, 2021, 70(5): 054201. doi: 10.7498/aps.70.20201362
    [7] Wu Di, Jiang Zi-Zhen, Yu Huan-Huan, Zhang Chen-Shuang, Zhang Jiao, Lin Dan-Ying, Yu Bin, Qu Jun-Le. Quantitative phase microscopy imaging based on fractional spiral phase plate. Acta Physica Sinica, 2021, 70(15): 158702. doi: 10.7498/aps.70.20201884
    [8] Precise phase retrieval with carrier removal from single off-axis hologram by linear regression. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211509
    [9] Ge Yin-Juan, Pan Xing-Chen, Liu Cheng, Zhu Jian-Qiang. Technique of detecting optical components based on coherent modulation imaging. Acta Physica Sinica, 2020, 69(17): 174202. doi: 10.7498/aps.69.20200224
    [10] Li Yuan-Jie, He Xiao-Liang, Kong Yan, Wang Shou-Yu, Liu Cheng, Zhu Jian-Qiang. Shearing interferometric electron beam imaging based on ptychographic iterative engine method. Acta Physica Sinica, 2017, 66(13): 134202. doi: 10.7498/aps.66.134202
    [11] Xiao Jun, Li Deng-Yu, Wang Ya-Li, Shi Yi-Shi. Ptychographical algorithm of the parallel scheme. Acta Physica Sinica, 2016, 65(15): 154203. doi: 10.7498/aps.65.154203
    [12] He Xiao-Liang, Liu Cheng, Wang Ji-Cheng, Wang Yue-Ke, Gao Shu-Mei, Zhu Jian-Qiang. Study on the periodic error in ptychographic iterative engine imaging. Acta Physica Sinica, 2014, 63(3): 034208. doi: 10.7498/aps.63.034208
    [13] Liu Cheng, Pan Xing-Chen, Zhu Jian-Qiang. Coherent diffractive imaging based on the multiple beam illumination with cross grating. Acta Physica Sinica, 2013, 62(18): 184204. doi: 10.7498/aps.62.184204
    [14] Yang Zhen-Ya, Zheng Chu-Jun. Phase retrieval of pure phase object based on compressed sensing. Acta Physica Sinica, 2013, 62(10): 104203. doi: 10.7498/aps.62.104203
    [15] Liu Hong-Zhan, Ji Yue-Feng. An ameliorated fast phase retrieval iterative algorithm based on the angular spectrum theory. Acta Physica Sinica, 2013, 62(11): 114203. doi: 10.7498/aps.62.114203
    [16] Jiang Hao, Zhang Xin-Ting, Guo Cheng-Shan. Lensless coherent diffractive imaging with a Fresnel diffraction pattern. Acta Physica Sinica, 2012, 61(24): 244203. doi: 10.7498/aps.61.244203
    [17] Fan Jia-Dong, Jiang Huai-Dong. Coherent X-ray diffraction imaging and its applications in materials science and biology. Acta Physica Sinica, 2012, 61(21): 218702. doi: 10.7498/aps.61.218702
    [18] Liu Hui-Qiang, Ren Yu-Qi, Zhou Guang-Zhao, He You, Xue Yan-Ling, Xiao Ti-Qiao. Investigation on the application of phase-attenuation duality to X-ray mixed contrast quantitative micro-tomography. Acta Physica Sinica, 2012, 61(7): 078701. doi: 10.7498/aps.61.078701
    [19] Huang Yan-Ping, Qi Chun-Yuan. Measurement of refractive index profile of holey fiber using quantitative phase tomography. Acta Physica Sinica, 2006, 55(12): 6395-6398. doi: 10.7498/aps.55.6395
    [20] Yu Bin, Peng Xiang, Tian Jin-Dong, Niu Han-Ben. Phase retrieval for hard x-ray in-line phase contrast imaging. Acta Physica Sinica, 2005, 54(5): 2034-2037. doi: 10.7498/aps.54.2034
Metrics
  • Abstract views:  7592
  • PDF Downloads:  321
  • Cited By: 0
Publishing process
  • Received Date:  18 August 2016
  • Accepted Date:  05 December 2016
  • Published Online:  05 March 2017

/

返回文章
返回
Baidu
map