Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A method of efficiently generating arbitrary vector beams

Qi Shu-Xia Liu Sheng Li Peng Han Lei Cheng Hua-Chao Wu Dong-Jing Zhao Jian-Lin

Citation:

A method of efficiently generating arbitrary vector beams

Qi Shu-Xia, Liu Sheng, Li Peng, Han Lei, Cheng Hua-Chao, Wu Dong-Jing, Zhao Jian-Lin
PDF
HTML
Get Citation
  • Vector beams have been used in scientific and engineering researches due to their unique focusing properties. In recent years, many methods of generating the vector beams have been proposed, among which the spatial light modulator (SLM) is widely used based on the superposition principle with using orthogonally polarized beams. However, the energy waste is generally associated with these superposition methods. How to efficiently generate vector beams is still a hot topic. Recently, we proposed an efficient method to generate tunable vector beams by using two triangular common-path interferometers (TCPIs) as the beam splitting and combining system. However, due to the complex structure of the TCPI, the system is difficult to adjust and unstable. In addition, the optical system brings about a long optical path, and the vector beams consisting of non-eigen modes will be distorted obviously with a long distance propagation. In this paper, an improved method is proposed. We replace the TCPIs with a pair of beam displacers, which act as a beam splitter and combiner, respectively. In this setup, we can arbitrarily manipulate the polarization states and phase distributions of vector beams in real time by managing the phase diagrams load on the SLM. The whole optical system does not involve any diffractive optical elements, and has a higher conversion efficiency. The improved optical system is compact and stable, and makes the adjustment of coaxiality easier. The light energy utilization depends mainly on the reflectivity of SLM. The efficiency of generating vector beams is increased to 58% by using an SLM with a reflectivity value of 79%. Several typical vector beams with phases and tunable amplitude, including cylindrical vector beams, fractional vector beams, and vector beams with double singularities, double-mode, radially variant polarization distribution, and azimuthally and radially variant polarization distribution, are generated and verified well experimentally. This method is also expected to create high-power vector beams and play an important role in laser processing and light trapping.
      Corresponding author: Liu Sheng, shengliu@nwpu.edu.cn ; Zhao Jian-Lin, jlzhao@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11634010, 61675168, 11774289), the National Key Research and Development Program of China (Grant No. 2017YFA0303800), the Joint Fund of the National Natural Science Foundation of China and China Academy of Engineering Physics (Grant No. U1630125), the Basic Research Plan of the Natural Science Research Project of Shaanxi Province, China (Grant No. 2018JM1057), and the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University, China (Grant No. ZZ2018177).
    [1]

    Zhan Q W 2009 Adv. Opt. Photon. 1 1Google Scholar

    [2]

    Quabis S, Dorn R, Eberler M, Glöckl O, Leuchs G 2000 Opt. Commun. 179 1Google Scholar

    [3]

    Dorn R, Quabis S, Leuchs G 2003 Phys. Rev. Lett. 91 233901Google Scholar

    [4]

    Zhao Y Q, Zhan Q W, Zhang Y, Li Y P 2005 Opt. Lett. 30 848Google Scholar

    [5]

    Kozawa Y, Sato S 2006 Opt. Lett. 31 820Google Scholar

    [6]

    Wang H F, Shi L P, Lukyanchuk B, Sheppard C, Chong C T 2008 Nat. Photonics 2 501Google Scholar

    [7]

    Li P, Guo X Y, Qi S X, Han L, Zhang Y, Liu S, Li Y, Zhao J L 2018 Sci. Rep. 8 9831Google Scholar

    [8]

    Liu S, Wang M R, Li P, Zhang P, Zhao J L 2013 Opt. Lett. 38 2416Google Scholar

    [9]

    Liu S, Li P, Zhang Y, Gan X, Wang M, Zhao J 2016 Sci. Rep. 6 20774Google Scholar

    [10]

    Zhou J, Zhang W, Liu Y, Ke Y, Liu Y, Luo H, Wen S 2016 Sci. Rep. 6 34276Google Scholar

    [11]

    Wei B Y, Chen P, Hu W, Ji W, Zheng L Y, Ge S J, Ming Y, Chigrinov V, Lu Y Q 2015 Sci. Rep. 5 17484Google Scholar

    [12]

    Cardano F, Marrucci L 2015 Nat. Photonics 9 776Google Scholar

    [13]

    Zhang Y, Li P, Liu S, Han L, Cheng H, Zhao J 2016 Opt. Express 24 28409Google Scholar

    [14]

    Li P, Liu S, Peng T, Xie G, Gan X, Zhao J 2014 Opt. Express 22 7598Google Scholar

    [15]

    Li P, Wu D, Zhang Y, Liu S, Li Y, Qi S, Zhao J 2018 Photon. Res. 6 756Google Scholar

    [16]

    Cheng H C, Li P, Liu S, Chen P, Han L, Zhang Y, Hu W, Zhao J L 2017 Appl. Phys. Lett. 111 141901Google Scholar

    [17]

    Xie X S, Chen Y Z, Yang K, Zhou J Y 2014 Phys. Rev. Lett. 113 263901Google Scholar

    [18]

    Nieminen T A, Heckenberg N R, Rubinsztein D H 2008 Opt. Lett. 33 122Google Scholar

    [19]

    Wang X L, Chen J, Li Y, Ding J, Guo C S, Wang H T 2010 Phys. Rev. Lett. 105 253602Google Scholar

    [20]

    Milione G, Nguyen T A, Leach J, Nolan D A, Alfano R R 2015 Opt. Lett. 40 4887Google Scholar

    [21]

    Pohl D 1972 Appl. Phys. Lett. 20 266Google Scholar

    [22]

    Kozawa Y, Sato S 2005 Opt. Lett. 30 3063Google Scholar

    [23]

    Bisson J F, Li J, Ueda K, Senatsky Y 2006 Opt. Express 14 3304Google Scholar

    [24]

    Lai W J, Lim B C, Phua P B, Tiaw K S, Teo H H, Hong M H 2008 Opt. Express 16 15694Google Scholar

    [25]

    Bomzon Z, Biener G, Kleiner V, Hasman E 2002 Opt. Lett. 27 285Google Scholar

    [26]

    Cardano F, Karimi E, Slussarenko S, Marrucci L, de Lisio C, Santamato E 2012 Appl. Opt. 51 C1Google Scholar

    [27]

    Yi X, Ling X, Zhang Z, Li Y, Zhou X, Liu Y, Chen S, Luo H, Wen S 2014 Opt. Express 22 17207Google Scholar

    [28]

    Li P, Zhang Y, Liu S, Ma C J, Han L, Cheng H C, Zhao J L 2016 Opt. Lett. 41 2205Google Scholar

    [29]

    Zhang Y, Li P, Ma C J, Liu S, Cheng H C, Zhao J L, Han L 2017 Appl. Opt. 56 4956Google Scholar

    [30]

    Christian M, Alexander J, Severin F, Stefan B, Monika R M 2007 New J. Phys. 9 78Google Scholar

    [31]

    Liu S, Li P, Peng T, Zhao J 2012 Opt. Express 20 21715Google Scholar

    [32]

    Wang X L, Ding J P, Ni W J, Guo C S, Wang H T 2007 Opt. Lett. 32 3549Google Scholar

    [33]

    Liu S, Qi S X, Zhang Y, Li P, Wu D J, Han L, Zhao J L 2018 Photon. Res. 6 228Google Scholar

    [34]

    Liu S, Han L, Li P, Zhang Y, Cheng H, Zhao J 2017 Appl. Phys. Lett. 110 171112Google Scholar

  • 图 1  可产生任意矢量光场的实验光路 HWP, 半波片; BD, 光束偏移器; RAPM, 直角反射棱镜; SLM, 空间光调制器; QWP, 1/4波片; L, 透镜; P, 检偏器; CCD, 电荷耦合器件; 插图表示±1阶相位

    Figure 1.  Experimental setup for generating arbitrary vector beams. HWP, half-wave plate; BD, beam displacer; RAPM, right-angle prism mirror; SLM, spatial light modulator; QWP, quarter-wave plate; L, lens; P, polarizer; CCD, charge-coupled device; the inset shows the first-order helix phase map.

    图 2  柱矢量光场的实验产生结果 (a) m = 1, $ \phi$0 = 0; (b) m = 1, $ \phi$0 = $ \text{π}$/2; (c) m = 2, $ \phi$0 = 0; (d) m = 5, $ \phi$0 = 0; 第一行为光场强度分布和偏振态分布(由短线表示);第二、三行为分别经水平和竖直方向检偏后的光场强度分布

    Figure 2.  Experiment results of cylindrical vector beams: (a) m = 1, $ \phi$0 = 0; (b) m = 1, $ \phi$0 = $ \phi$/2; (c) m = 2, $ \phi$0 = 0; (d) m = 5, $ \phi$0 = 0. The first column: intensity distributions of light fields with polarizations marked with short lines; the second and third columns: intensity distributions of light fields passing through the horizontal and vertical polarizers, respectively.

    图 3  携带涡旋相位的柱矢量光场的实验结果 (a) m1 = 2, m2 = 0, $\phi $0 = 0; (b) m1 = 5, m2 = −1, $\phi $0 = 0. 第一列为光场强度分布和偏振态分布;第二、三列为分别经水平和竖直方向检偏后的光场强度分布

    Figure 3.  Experiment results of cylindrical vector beams with vortex phase: (a) m1 = 2, m2 = 0, $\phi $0 = 0; (b) m1 = 5, m2 = −1, $\phi $0 = 0. The first column: intensity and polarizations distributions of light fields; the second and third columns: intensity distributions of light field passing through the horizontal and vertical polarizers, respectively.

    图 4  分数阶矢量光场的实验结果 (a) m = 1/2, $\phi $0 = 0; (b) m = 3/2, $\phi $0 = 0. 第一列为光场强度和偏振态分布; 第二、三列为分别经水平和竖直方向检偏后的光场强度分布

    Figure 4.  Experiment results of fractional vector beams: (a) m = 1/2, $\phi $0 = 0; (b) m = 3/2, $\phi $0 = 0. The first column: intensity and polarizations distributions of light fields; the second and third columns: intensity distributions of light field passing through the horizontal and vertical polarizers, respectively.

    图 5  双奇点矢量光场的实验结果 (a) m1 = m2 = 1, $\phi $0 = 0; (b) m1 = −m2 = 1, $\phi $0 = 0. 第一列为光场强度和偏振态分布, 第二、三列为分别经水平和竖直方向检偏后的光场强度分布

    Figure 5.  Experiment results of vector beams with double singularities: (a) m1 = m2 = 1, $\phi $0 = 0; (b) m1 = −m2 = 1, $\phi $0 = 0. The first column: intensity and polarizations distributions of light fields; the second and third columns: intensity distributions of light field passing through the horizontal and vertical polarizers, respectively.

    图 6  其他几种矢量光场的实验结果 (a) 双模矢量光场; (b) 偏振态沿径向变化矢量光场; (c) 偏振态沿角向与径向同时变化矢量光场. 第一行为光场强度分布和偏振态分布; 第二、三行为分别经水平和竖直方向检偏后的光场强度分布

    Figure 6.  Experiment results of other vector beams: (a) Double-mode vector beam; (b) vector beam with radially variant polarization distribution; (c) vector beam with azimuthally and radially variant polarization distribution. The first column: intensity distributions and polarizations of light fields; the second and third columns: intensity distributions of light fields passing through the horizontal and vertical polarizers, respectively.

    Baidu
  • [1]

    Zhan Q W 2009 Adv. Opt. Photon. 1 1Google Scholar

    [2]

    Quabis S, Dorn R, Eberler M, Glöckl O, Leuchs G 2000 Opt. Commun. 179 1Google Scholar

    [3]

    Dorn R, Quabis S, Leuchs G 2003 Phys. Rev. Lett. 91 233901Google Scholar

    [4]

    Zhao Y Q, Zhan Q W, Zhang Y, Li Y P 2005 Opt. Lett. 30 848Google Scholar

    [5]

    Kozawa Y, Sato S 2006 Opt. Lett. 31 820Google Scholar

    [6]

    Wang H F, Shi L P, Lukyanchuk B, Sheppard C, Chong C T 2008 Nat. Photonics 2 501Google Scholar

    [7]

    Li P, Guo X Y, Qi S X, Han L, Zhang Y, Liu S, Li Y, Zhao J L 2018 Sci. Rep. 8 9831Google Scholar

    [8]

    Liu S, Wang M R, Li P, Zhang P, Zhao J L 2013 Opt. Lett. 38 2416Google Scholar

    [9]

    Liu S, Li P, Zhang Y, Gan X, Wang M, Zhao J 2016 Sci. Rep. 6 20774Google Scholar

    [10]

    Zhou J, Zhang W, Liu Y, Ke Y, Liu Y, Luo H, Wen S 2016 Sci. Rep. 6 34276Google Scholar

    [11]

    Wei B Y, Chen P, Hu W, Ji W, Zheng L Y, Ge S J, Ming Y, Chigrinov V, Lu Y Q 2015 Sci. Rep. 5 17484Google Scholar

    [12]

    Cardano F, Marrucci L 2015 Nat. Photonics 9 776Google Scholar

    [13]

    Zhang Y, Li P, Liu S, Han L, Cheng H, Zhao J 2016 Opt. Express 24 28409Google Scholar

    [14]

    Li P, Liu S, Peng T, Xie G, Gan X, Zhao J 2014 Opt. Express 22 7598Google Scholar

    [15]

    Li P, Wu D, Zhang Y, Liu S, Li Y, Qi S, Zhao J 2018 Photon. Res. 6 756Google Scholar

    [16]

    Cheng H C, Li P, Liu S, Chen P, Han L, Zhang Y, Hu W, Zhao J L 2017 Appl. Phys. Lett. 111 141901Google Scholar

    [17]

    Xie X S, Chen Y Z, Yang K, Zhou J Y 2014 Phys. Rev. Lett. 113 263901Google Scholar

    [18]

    Nieminen T A, Heckenberg N R, Rubinsztein D H 2008 Opt. Lett. 33 122Google Scholar

    [19]

    Wang X L, Chen J, Li Y, Ding J, Guo C S, Wang H T 2010 Phys. Rev. Lett. 105 253602Google Scholar

    [20]

    Milione G, Nguyen T A, Leach J, Nolan D A, Alfano R R 2015 Opt. Lett. 40 4887Google Scholar

    [21]

    Pohl D 1972 Appl. Phys. Lett. 20 266Google Scholar

    [22]

    Kozawa Y, Sato S 2005 Opt. Lett. 30 3063Google Scholar

    [23]

    Bisson J F, Li J, Ueda K, Senatsky Y 2006 Opt. Express 14 3304Google Scholar

    [24]

    Lai W J, Lim B C, Phua P B, Tiaw K S, Teo H H, Hong M H 2008 Opt. Express 16 15694Google Scholar

    [25]

    Bomzon Z, Biener G, Kleiner V, Hasman E 2002 Opt. Lett. 27 285Google Scholar

    [26]

    Cardano F, Karimi E, Slussarenko S, Marrucci L, de Lisio C, Santamato E 2012 Appl. Opt. 51 C1Google Scholar

    [27]

    Yi X, Ling X, Zhang Z, Li Y, Zhou X, Liu Y, Chen S, Luo H, Wen S 2014 Opt. Express 22 17207Google Scholar

    [28]

    Li P, Zhang Y, Liu S, Ma C J, Han L, Cheng H C, Zhao J L 2016 Opt. Lett. 41 2205Google Scholar

    [29]

    Zhang Y, Li P, Ma C J, Liu S, Cheng H C, Zhao J L, Han L 2017 Appl. Opt. 56 4956Google Scholar

    [30]

    Christian M, Alexander J, Severin F, Stefan B, Monika R M 2007 New J. Phys. 9 78Google Scholar

    [31]

    Liu S, Li P, Peng T, Zhao J 2012 Opt. Express 20 21715Google Scholar

    [32]

    Wang X L, Ding J P, Ni W J, Guo C S, Wang H T 2007 Opt. Lett. 32 3549Google Scholar

    [33]

    Liu S, Qi S X, Zhang Y, Li P, Wu D J, Han L, Zhao J L 2018 Photon. Res. 6 228Google Scholar

    [34]

    Liu S, Han L, Li P, Zhang Y, Cheng H, Zhao J 2017 Appl. Phys. Lett. 110 171112Google Scholar

  • [1] Wang Liang-Wei, Liu Fang-De, Li Yun-Da, Han Wei, Meng Zeng-Ming, Zhang Jing. Construction of two-dimensional arbitrary shape 87Rb atomic array based on spatial light modulator. Acta Physica Sinica, 2023, 72(6): 064201. doi: 10.7498/aps.72.20222096
    [2] Wang Fu-Jie, Cao Xiao-Yu, Gao Chao, Wen Xue-Ke, Lei Bing. Algorithms for calculating polarization direction based on spatial modulation of vector optical field. Acta Physica Sinica, 2023, 72(1): 010201. doi: 10.7498/aps.72.20221745
    [3] Yu Huan-Huan, Zhang Chen-Shuang, Lin Dan-Ying, Yu Bin, Qu Jun-Le. Two-photon multifocal structured light microscopy based on high-speed phase-type spatial light modulator. Acta Physica Sinica, 2021, 70(9): 098701. doi: 10.7498/aps.70.20201797
    [4] Zhao Gu-Hao, Mao Shao-Jie, Zhao Shang-Hong, Meng Wen, Zhu Jie, Zhang Xiao-Qiang, Wang Guo-Dong, Gu Wen-Yuan. Principle and experimental study of self-stability of reflector based on two magneto-optical crystals and two mirrors under effect of temperature and radiation. Acta Physica Sinica, 2019, 68(16): 164202. doi: 10.7498/aps.68.20190429
    [5] Bai Yun-He, Zang Rui-Huan, Wang Pan, Rong Teng-Da, Ma Feng-Ying, Du Yan-Li, Duan Zhi-Yong, Gong Qiao-Xia. Single-shot incoherent digital holography based on spatial light modulator. Acta Physica Sinica, 2018, 67(6): 064202. doi: 10.7498/aps.67.20172127
    [6] Xie Wan-Cai, Huang Su-Juan, Shao Wei, Zhu Fu-Quan, Chen Mu-Sheng. Free-space optical communication based on hybrid optical mode array encoding. Acta Physica Sinica, 2017, 66(14): 144102. doi: 10.7498/aps.66.144102
    [7] Wang Ji-Ming, He Chong-Jun, Liu You-Wen, Yang Feng, Tian Wei, Wu Tong. The focused vectorial fields with ultra-long depth of focus generated by the tunable complex filter. Acta Physica Sinica, 2016, 65(4): 044202. doi: 10.7498/aps.65.044202
    [8] Wang Mei-Jie, Jia Wei-Guo, Zhang Si-Yuan, Menke Nei-Mu-Le, Yang Jun, Zhang Jun-Ping. Effect of Raman gain on the state of polarization evolution in a low-birefringence fiber. Acta Physica Sinica, 2015, 64(3): 034212. doi: 10.7498/aps.64.034212
    [9] Liu Ji-Lin, Chen Zi-Yang, Zhang Lei, Pu Ji-Xiong. Polarization and propagation characteristics of the azimuthally polarized non-diffracting beam. Acta Physica Sinica, 2015, 64(6): 064201. doi: 10.7498/aps.64.064201
    [10] Xi Si-Xing, Wang Xiao-Lei, Huang Shuai, Chang Sheng-Jiang, Lin Lie. Generation of arbitrary vector beam based on optical holography. Acta Physica Sinica, 2015, 64(12): 124202. doi: 10.7498/aps.64.124202
    [11] Ma Jun, Yuan Cao-Jin, Feng Shao-Tong, Nie Shou-Ping. Full-field detection of polarization state based on multiplexing digital holography. Acta Physica Sinica, 2013, 62(22): 224204. doi: 10.7498/aps.62.224204
    [12] Wang Qiang, Guan Bao-Lu, Liu Ke, Shi Guo-Zhu, Liu Xin, Cui Bi-Feng, Han Jun, Li Jian-Jun, Xu Chen. Temperature characteristics of VCSEL with liquid crystal overlay. Acta Physica Sinica, 2013, 62(23): 234206. doi: 10.7498/aps.62.234206
    [13] Zhou Qiao-Qiao, Xu Shu-Wu, Lu Jun-Fa, Zhou Qi, Ji Xian-Ming, Yin Jian-Ping. Generation of the controllable triple-well optical trap by liquid-crystal spatial light modulator. Acta Physica Sinica, 2013, 62(15): 153701. doi: 10.7498/aps.62.153701
    [14] Zhao Gu-Hao, Zhao Shang-Hong, Yao Zhou-Shi, Hao Chen-Lu, Meng Wen, Wang Xiang, Zhu Zhi-Hang, Liu Feng. Experimental study on polarization-independent reflector structure based on magneto-optical crystal and two mirrors. Acta Physica Sinica, 2013, 62(13): 134201. doi: 10.7498/aps.62.134201
    [15] Gu Song-Bo, Xu Shu-Wu, Lu Jun-Fa, Ji Xian-Ming, Yin Jian-Ping. Generation of the array of optical traps by liquid crystal spatial light modulator. Acta Physica Sinica, 2012, 61(15): 153701. doi: 10.7498/aps.61.153701
    [16] Xu Shu-Wu, Zhou Qiao-Qiao, Gu Song-Bo, Ji Xian-Ming, Yin Jian-Ping. Generation of the three-dimensional array of optical trap by spatial light modulator. Acta Physica Sinica, 2012, 61(22): 223702. doi: 10.7498/aps.61.223702
    [17] Zhang Xuan-Ni, Zhang Chun-Min. The optical transmission and improvement of flux for the static polarization wind imaging interferometer. Acta Physica Sinica, 2012, 61(10): 104210. doi: 10.7498/aps.61.104210
    [18] Qi Xiao-Qing, Gao Chun-Qing. Experimental study of detecting orbital angular momentumstates of spiral phase beams. Acta Physica Sinica, 2011, 60(1): 014208. doi: 10.7498/aps.60.014208
    [19] Wang Chen, Yuan Jing-He, Wang Gui-Ying, Xu Zhi-Zhan. The influence of polarized light on fluorescence emission in total internal refl ection microscopy. Acta Physica Sinica, 2003, 52(12): 3014-3019. doi: 10.7498/aps.52.3014
    [20] Su Hui-Min, Zheng Xi Guang, Wang Xia, Xu Jian-Feng, Wang He-Zhou. . Acta Physica Sinica, 2002, 51(5): 1044-1048. doi: 10.7498/aps.51.1044
Metrics
  • Abstract views:  12653
  • PDF Downloads:  396
  • Cited By: 0
Publishing process
  • Received Date:  08 October 2018
  • Accepted Date:  25 October 2018
  • Available Online:  01 January 2019
  • Published Online:  20 January 2019

/

返回文章
返回
Baidu
map