-
Optical frequency comb is a kind of new pulse source, whose repetition rate and phase are locked. Optical frequency comb plays an important role in absolute distance measurement and time-frequency metrology. Lots of laser ranging methods such as time-of-flight and multi-heterodyne interferometry based on femtosecond laser pulse have been used in distance measurement. In this paper, a high-precision distance measurement system based on optical sampling by cavity tuning is set up to realize a long absolute distance measurement. And a kind of error compensation method is proposed based on the asymmetric cross-correlation patterns. In traditional optical sampling by cavity tuning measurement system, the fiber link is inserted into the reference path to extend the non-ambiguity distance, which does not have a good performance in arbitrary distance measurement. In our system, we use a 116-meter-long fiber which is inserted into the measuring path to extend the non-ambiguity distance. Besides, dispersion compensation technique is used to control the shape of the laser pulse. An asymmetric optical pulse is used as the light source, so that we can obtain extremely asymmetric cross-correlation patterns. The cross-correlation patterns can be acquired by sweeping the repetition frequency. We use an arbitrary waveform generator to provide the scanning voltage, and the scanning voltage can adjust the repetition rate of the pulse and has a frequency of 1 Hz. There will be two peaks on the envelope of cross-correlation pattern, and both peaks can be used to obtain the distance information. When the laser propagates in vacuum and the system is stabilized, the distance between these two peaks is constant, and we can use this distance to obtain the important factor N, which is used to describe the number of the pulse. As a result, we can realize absolute distance measurement without the help of other measurement systems. However, due to the dispersion of the medium, the distance between these two peaks is not constant, which means that the asymmetry of the cross-correlation patterns in dispersion medium will influence the measurement results. And the deviation is relevant to the peak-to-peak distance. We use the difference among the peak-to-peak distances at different positions to correct the measurement results. A comparison of our results with those from a commercial He-Ne laser interferometer shows that they are in agreement within 2 μm over 50 m distance, corresponding to a relative precision of 1.9×10-7.
-
Keywords:
- optical frequency comb /
- absolute distance measurement /
- optical sampling by cavity tuning /
- asymmetric cross-correlation patterns
[1] Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512
[2] Wu X J, Li Y, Wei H Y, Zhang J T 2012 Laser Optoelectron. Prog. 49 1 (in Chinese)[吴学健, 李岩, 尉昊赟, 张继涛 2012 激光与光电子学进展 49 1]
[3] Zhou W H, Shi J K, Ji R Y, Li Y, Liu Y 2017 J. Sci. Instrum. 38 1859 (in Chinese)[周维虎, 石俊凯, 纪荣祎, 黎尧, 刘娅 2017 仪器仪表学报 38 1859]
[4] Jang Y S, Lee K, Han s, Lee J, Kim Y J, Kim S W 2014 Opt. Eng. 53 122403
[5] Minoshima K, Arai K, Inaba H 2011 Opt. Express 19 26095
[6] Jin J, Kim Y J, Kim Y, Kim S W, Kang C S 2006 Opt. Express 14 5968
[7] Zhao X, Qu X, Zhang F, Zhao Y, Tang G 2018 Opt. Lett. 43 807
[8] Cui M, Zeitouny M G, Bhattacharya N, Sa V D B, Urbach H P 2011 Opt. Express 19 6549
[9] Joo K N, Kim S W 2006 Opt. Express 14 5954
[10] Lee J, Kim Y J, Lee K, Lee S, Kim S W 2010 Nat. Photon. 4 207
[11] Ye J 2004 Opt. Lett. 29 1153
[12] Hochrein T, Wilk R, Mei M, Holzwarth R, Krumbholz N, Koch M 2010 Opt. Express 18 1613
[13] Wu H Z, Cao S Y, Zhang F M, Xing S J, Qu X H 2014 Acta Phys. Sin. 63 100601 (in Chinese)[吴翰钟, 曹士英, 张福民, 邢书剑, 曲兴华 2014 63 100601]
[14] Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photon. 3 351
[15] Cui P, Yang L, Guo Y, Lin J, Liu Y, Zhu J 2018 IEEE Photon. Technol. Lett. 30 744
[16] Wu H, Zhang F, Liu T, Balling P, Li J, Qu X 2016 Opt. Lett. 41 2366
[17] Nakajima Y, Minoshima K 2015 Opt. Express 23 25979
[18] Zeitouny M G, Cui M, Bhattacharya N, Urbach H P, van den Berg S A, Janssen A J E M 2010 Phys. Rev. A 82 023808
[19] Wang G C, Yan S H, Yang J, Lin C B, Wei C H, Du Z G 2015 Acta Opt. Sin. 35 167 (in Chinese)[王国超, 颜树华, 杨俊, 林存宝, 魏春华, 杜志广 2015 光学学报 35 167]
[20] Birch K P, Downs M J 1993 Metrologia 30 155
-
[1] Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512
[2] Wu X J, Li Y, Wei H Y, Zhang J T 2012 Laser Optoelectron. Prog. 49 1 (in Chinese)[吴学健, 李岩, 尉昊赟, 张继涛 2012 激光与光电子学进展 49 1]
[3] Zhou W H, Shi J K, Ji R Y, Li Y, Liu Y 2017 J. Sci. Instrum. 38 1859 (in Chinese)[周维虎, 石俊凯, 纪荣祎, 黎尧, 刘娅 2017 仪器仪表学报 38 1859]
[4] Jang Y S, Lee K, Han s, Lee J, Kim Y J, Kim S W 2014 Opt. Eng. 53 122403
[5] Minoshima K, Arai K, Inaba H 2011 Opt. Express 19 26095
[6] Jin J, Kim Y J, Kim Y, Kim S W, Kang C S 2006 Opt. Express 14 5968
[7] Zhao X, Qu X, Zhang F, Zhao Y, Tang G 2018 Opt. Lett. 43 807
[8] Cui M, Zeitouny M G, Bhattacharya N, Sa V D B, Urbach H P 2011 Opt. Express 19 6549
[9] Joo K N, Kim S W 2006 Opt. Express 14 5954
[10] Lee J, Kim Y J, Lee K, Lee S, Kim S W 2010 Nat. Photon. 4 207
[11] Ye J 2004 Opt. Lett. 29 1153
[12] Hochrein T, Wilk R, Mei M, Holzwarth R, Krumbholz N, Koch M 2010 Opt. Express 18 1613
[13] Wu H Z, Cao S Y, Zhang F M, Xing S J, Qu X H 2014 Acta Phys. Sin. 63 100601 (in Chinese)[吴翰钟, 曹士英, 张福民, 邢书剑, 曲兴华 2014 63 100601]
[14] Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photon. 3 351
[15] Cui P, Yang L, Guo Y, Lin J, Liu Y, Zhu J 2018 IEEE Photon. Technol. Lett. 30 744
[16] Wu H, Zhang F, Liu T, Balling P, Li J, Qu X 2016 Opt. Lett. 41 2366
[17] Nakajima Y, Minoshima K 2015 Opt. Express 23 25979
[18] Zeitouny M G, Cui M, Bhattacharya N, Urbach H P, van den Berg S A, Janssen A J E M 2010 Phys. Rev. A 82 023808
[19] Wang G C, Yan S H, Yang J, Lin C B, Wei C H, Du Z G 2015 Acta Opt. Sin. 35 167 (in Chinese)[王国超, 颜树华, 杨俊, 林存宝, 魏春华, 杜志广 2015 光学学报 35 167]
[20] Birch K P, Downs M J 1993 Metrologia 30 155
Catalog
Metrics
- Abstract views: 6712
- PDF Downloads: 146
- Cited By: 0