-
Of all iron-based superconductors, FeSe possesses the simplest structure whereas its superconducting critical temperature can be remarkably enhanced. Compared with bulk sample fabrication, the film preparation process is very precise and controllable. Although FeSe monolayer films exhibit a high Tc, they are unstable in air, and ex-situ measurements are very difficult. Therefore, the stable films with~100 nm in thickness can serve as good candidates to explore the mechanisms of iron-based superconductors. There is no doubt that the fabrication of high-quality FeSe thin films is of significance. The pulsed laser deposition (PLD) technique has more advantages in the growth of FeSe thick films than any other film fabrication technology, because of its high efficiency and wide adaptability. In this work, we systematically optimize the growth conditions of FeSe thin film fabricated by PLD. The main results are as follows. 1) The optimal growth temperature is 350℃, where the film has the best crystallinity and the highest Tc. 2) High-quality -FeSe epitaxial thin films with the thickness ranging from 10 to 320 nm have been successfully prepared on twelve types of substrates:CaF2, LiF, SrTiO3, MgO, BaF2, TiO2, LaAlO3, MgF2, Nb-SrTiO3, LSAT, LaSr(AlO4) and MgAl2O4. The Tc for the films on CaF2 with the same thickness of 160 nm can be tuned from 2 K to 14 K. 3) The Tc of the FeSe thick films may be precisely tuned by the Fe/Se ratio which is affected by the proportion of the nominal components of the target, the laser energy density and the ablation off-stoichiometry of target. 4) The surface morphology measurement, cleavability and transferability experiments of films are performed. In addition, it is worth of mentioning that there is a significant positive correlation between Tc, lattice constant c and residual resistivity ratio (RRR), as evidenced through a detailed statistical analysis of the data from more than 1500 samples. Since c and RRR are usually associated with the vacancies or defects, we conclude that the superconductivity of -FeSe thin films is closely related to the ratio of Fe to Se. Moreover, the first principle simulation shows that 0.5% increase of Fe content does lead to a change of 0.05 of c. However, according to the angle-resolved photoelectron spectroscopy experiment, there is no obvious change near the point in the hole energy band, but the energy band changes significantly at the M point. This variation of electronic structures cannot be explained by electron filling which lifts up the Fermi energy. Therefore, the specific relationship among the superconductivity, lattice structure and electronic structure of FeSe thin films remains to be clarified. Such a series of high-quality -FeSe films offers a chance to further explore the nature of FeSe-based superconductors.
-
Keywords:
- superconductivity /
- tunable Tc /
- -FeSe thin film /
- pulsed laser deposition
[1] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262
[2] Paglione J, Greene R L 2010 Nature Phys. 6 645
[3] Wang Q, Shen Y, Pan B, Hao Y, Ma M, Zhou F, Steffens P, Schmalzl K, Forrest T R, Abdel-Hafiez M, Chen X, Chareev D A, Vasiliev A N, Bourges P, Sidis Y, Cao H, Zhao J 2016 Nature Mater. 15 159
[4] Yuan D, Yuan J, Huang Y, Ni S, Feng Z, Zhou H, Mao Y, Jin K, Zhang G, Dong X, Zhou F, Zhao Z 2016 Phys. Rev. B 94 060506
[5] Imai Y, Sawada Y, Nabeshima F, Asami D, Kawai M, Maeda A 2017 Sci. Rep. 7 46653
[6] Hosoi S, Matsuura K, Ishida K, Wang H, Mizukami Y, Watashige T, Kasahara S, Matsuda Y, Shibauchi T 2016 Proc. Natl. Acad. Sci. USA 113 8139
[7] Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G, Felser C 2009 Nature Mater. 8 630
[8] Seo J J, Kim B Y, Kim B S, Jeong J K, Ok J M, Kim J S, Denlinger J D, Mo S K, Kim C, Kim Y K 2016 Nature Commun. 7 11116
[9] Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. Lett. 116 077002
[10] Miyata Y, Nakayama K, Sugawara K, Sato T, Takahashi T 2015 Nature Mater. 14 775
[11] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402
[12] Liu D, Zhang W, Mou D, He J, Ou Y B, Wang Q Y, Li Z, Wang L, Zhao L, He S, Peng Y, Liu X, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Hu J, Chen X, Ma X, Xue Q, Zhou X J 2012 Nature Commun. 3 931
[13] Peng R, Xu H C, Tan S Y, Cao H Y, Xia M, Shen X P, Huang Z C, Wen C H, Song Q, Zhang T, Xie B P, Gong X G, Feng D L 2014 Nature Commun. 5 5044
[14] Ge J F, Liu Z L, Liu C, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2015 Nature Mater. 14 285
[15] McQueen T M, Huang Q, Ksenofontov V, Felser C, Xu Q, Zandbergen H, Hor Y S, Allred J, Williams A J, Qu D, Checkelsky J, Ong N P, Cava R J 2009 Phys. Rev. B 79 014522
[16] Bhmer A E, Hardy F, Eilers F, Ernst D, Adelmann P, Schweiss P, Wolf T, Meingast C 2013 Phys. Rev. B 87 180505
[17] Koz C, Schmidt M, Borrmann H, Burkhardt U, R ler S, Carrillo-Cabrera W, Schnelle W, Schwarz U, Grin Y 2014 Zeitschrift fr Anorganische und Allgemeine Chemie 640 1600
[18] Karlsson S, Strobel P, Sulpice A, Marcenat C, Legendre M, Gay F, Pairis S, Leynaud O, Toulemonde P 2015 Supercond. Sci. Tech. 28 105009
[19] Bhmer A E, Taufour V, Straszheim W E, Wolf T, Canfield P C 2016 Phys. Rev. B 94 024526
[20] Agatsuma S, Yamagishi T, Takeda S, Naito M 2010 Physica C: Superconductivity 470 1468
[21] Han Y, Li W Y, Cao L X, Zhang S, Xu B, Zhao B R 2009 Journal of Physics. Condensed Matter: an Institute of Physics Journal 21 235702
[22] Nie Y F, Brahimi E, Budnick J I, Hines W A, Jain M, Wells B O 2009 Appl. Phys. Lett. 94 242505
[23] Chen T K, Luo J Y, Ke C T, Chang H H, Huang T W, Yeh K W, Chang C C, Hsu P C, Wu C T, Wang M J, Wu M K 2010 Thin Solid Films 519 1540
[24] Jung S G, Lee N H, Choi E M, Kang W N, Lee S I, Hwang T J, Kim D H 2010 Physica C: Superconductivity 470 1977
[25] Maeda A, Nabeshima F, Takahashi H, Okada T, Imai Y, Tsukada I, Hanawa M, Komiya S, Ichinose A 2014 Appl. Sur. Sci. 312 43
[26] Shiogai J, Ito Y, Mitsuhashi T, Nojima T, Tsukazaki A 2015 Nature Phys. 12 42
[27] Schneider R, Zaitsev A G, Fuchs D, v Lhneysen H 2012 Phys. Rev. Lett. 108 257003
[28] Qiu W, Ma Z, Patel D, Sang L, Cai C, Shahriar Al Hossain M, Cheng Z, Wang X, Dou S X 2017 ACS Appl. Mater. Interfaces 9 37446
[29] Wang M J, Luo J Y, Huang T W, Chang H H, Chen T K, Hsu F C, Wu C T, Wu P M, Chang A M, Wu M K 2009 Phys. Rev. Lett. 103 117002
[30] Wu M K, Hsu F C, Yeh K W, Huang T W, Luo J Y, Wang M J, Chang H H, Chen T K, Rao S M, Mok B H, Chen C L, Huang Y L, Ke C T, Wu P M, Chang A M, Wu C T, Perng T P 2009 Physica C: Superconductivity 469 340
[31] Tsukada A, Luna K E, Hammond R H, Beasley M R, Zhao J F, Risbud S H 2011 Applied Physics A 104 311
[32] Schneider R, Zaitsev A G, Fuchs D, v. Lhneysen H 2015 The European Physical Journal B 88 14
[33] Nabeshima F, Imai Y, Hanawa M, Tsukada I, Maeda A 2013 Appl. Phys. Lett. 103 172602
[34] Imai Y, Sawada Y, Nabeshima F, Maeda A 2015 Proc. Natl. Acad. Sci. USA 112 1937
[35] Qiu W, Ma Z, Liu Y, Wang X, Dou S X 2015 arXiv 1512.00352
[36] Imai Y, Sawada Y, Asami D, Nabeshima F, Maeda A 2016 Physica C: Superconductivity and its Applications 530 24
[37] Li L, Yang Z R, Sun Y P, Zhang J Y, Shen D Z, Zhang Y H 2011 Supercond. Sci. Tech. 24 015010
[38] Demura S, Ozaki T, Okazaki H, Mizuguchi Y, Kawasaki Y, Deguchi K, Watanabe T, Hara H, Yamaguchi T, Takeya H, Takano Y 2012 Journal of the Physical Society of Japan 81 043702
[39] Demura S, Okazaki H, Ozaki T, Hara H, Kawasaki Y, Deguchi K, Watanabe T, Denholme S J, Mizuguchi Y, Yamaguchi T, Takeya H, Takano Y 2013 Solid State Communications 154 40
[40] Tkachenko O, Morawski A, Zaleski A J, Przyslupski P, Dietl T, Diduszko R, Presz A, Werner-Malento K 2009 Journal of Superconductivity and Novel Magnetism 22 599
[41] Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L, Jia J F, Hung H H, Wu C, Ma X, Chen X, Xu Q K 2011 Science 332 1410
[42] Song C L, Wang Y L, Jiang Y P, Li Z, Wang L L, He K, Chen X, Ma X C, Xue Q K 2011 Phys. Rev. B 84 020503
[43] Feng Z P, Yuan J, He G, Hu W, Lin Z F, Li D, Jiang X Y, Huang Y L, Ni S L, Li J, Zhu B Y, Dong X L, Zhou F, Wang H B, Zhao Z X, Jin K 2018 Sci. Rep. 8 4039
[44] Springer-Materials https://materials.springer.com/isp/ phase-diagram/docs/c_0901080[2018-5-1]
[45] Feng Z, Yuan J, Li J, Wu X, Hu W, Shen B, Qin M, Zhao L, Zhu B, Stanev V, Liu M, Zhang G, Dong X, Zhou F, Zhou X, Hu J, Takeuchi I, Zhao Z, Jin K 2018 arXiv 1807.01273
[46] Tsukada I, Ichinose A, Nabeshima F, Imai Y, Maeda A 2016 AIP Advances 6 095314
[47] Ohnishi T, Lippmaa M, Yamamoto T, Meguro S, Koinuma H 2005 Appl. Phys. Lett. 87 241919
[48] Nakayama K, Miyata Y, Phan G N, Sato T, Tanabe Y, Urata T, Tanigaki K, Takahashi T 2014 Phys. Rev. Lett. 113 237001
[49] Watson M D, Yamashita T, Kasahara S, Knafo W, Nardone M, Beard J, Hardy F, McCollam A, Narayanan A, Blake S F, Wolf T, Haghighirad A A, Meingast C, Schofield A J, Lohneysen H, Matsuda Y, Coldea A I, Shibauchi T 2015 Phys. Rev. Lett. 115 027006
[50] Shen B, Feng Z P, Huang J W, Hu Y, Gao Q, Li C, Xu Y, Liu G D, Yu L, Zhao L, Jin K, Zhou X J 2017 Chin. Phys. B 26 077402
-
[1] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262
[2] Paglione J, Greene R L 2010 Nature Phys. 6 645
[3] Wang Q, Shen Y, Pan B, Hao Y, Ma M, Zhou F, Steffens P, Schmalzl K, Forrest T R, Abdel-Hafiez M, Chen X, Chareev D A, Vasiliev A N, Bourges P, Sidis Y, Cao H, Zhao J 2016 Nature Mater. 15 159
[4] Yuan D, Yuan J, Huang Y, Ni S, Feng Z, Zhou H, Mao Y, Jin K, Zhang G, Dong X, Zhou F, Zhao Z 2016 Phys. Rev. B 94 060506
[5] Imai Y, Sawada Y, Nabeshima F, Asami D, Kawai M, Maeda A 2017 Sci. Rep. 7 46653
[6] Hosoi S, Matsuura K, Ishida K, Wang H, Mizukami Y, Watashige T, Kasahara S, Matsuda Y, Shibauchi T 2016 Proc. Natl. Acad. Sci. USA 113 8139
[7] Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G, Felser C 2009 Nature Mater. 8 630
[8] Seo J J, Kim B Y, Kim B S, Jeong J K, Ok J M, Kim J S, Denlinger J D, Mo S K, Kim C, Kim Y K 2016 Nature Commun. 7 11116
[9] Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. Lett. 116 077002
[10] Miyata Y, Nakayama K, Sugawara K, Sato T, Takahashi T 2015 Nature Mater. 14 775
[11] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402
[12] Liu D, Zhang W, Mou D, He J, Ou Y B, Wang Q Y, Li Z, Wang L, Zhao L, He S, Peng Y, Liu X, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Hu J, Chen X, Ma X, Xue Q, Zhou X J 2012 Nature Commun. 3 931
[13] Peng R, Xu H C, Tan S Y, Cao H Y, Xia M, Shen X P, Huang Z C, Wen C H, Song Q, Zhang T, Xie B P, Gong X G, Feng D L 2014 Nature Commun. 5 5044
[14] Ge J F, Liu Z L, Liu C, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2015 Nature Mater. 14 285
[15] McQueen T M, Huang Q, Ksenofontov V, Felser C, Xu Q, Zandbergen H, Hor Y S, Allred J, Williams A J, Qu D, Checkelsky J, Ong N P, Cava R J 2009 Phys. Rev. B 79 014522
[16] Bhmer A E, Hardy F, Eilers F, Ernst D, Adelmann P, Schweiss P, Wolf T, Meingast C 2013 Phys. Rev. B 87 180505
[17] Koz C, Schmidt M, Borrmann H, Burkhardt U, R ler S, Carrillo-Cabrera W, Schnelle W, Schwarz U, Grin Y 2014 Zeitschrift fr Anorganische und Allgemeine Chemie 640 1600
[18] Karlsson S, Strobel P, Sulpice A, Marcenat C, Legendre M, Gay F, Pairis S, Leynaud O, Toulemonde P 2015 Supercond. Sci. Tech. 28 105009
[19] Bhmer A E, Taufour V, Straszheim W E, Wolf T, Canfield P C 2016 Phys. Rev. B 94 024526
[20] Agatsuma S, Yamagishi T, Takeda S, Naito M 2010 Physica C: Superconductivity 470 1468
[21] Han Y, Li W Y, Cao L X, Zhang S, Xu B, Zhao B R 2009 Journal of Physics. Condensed Matter: an Institute of Physics Journal 21 235702
[22] Nie Y F, Brahimi E, Budnick J I, Hines W A, Jain M, Wells B O 2009 Appl. Phys. Lett. 94 242505
[23] Chen T K, Luo J Y, Ke C T, Chang H H, Huang T W, Yeh K W, Chang C C, Hsu P C, Wu C T, Wang M J, Wu M K 2010 Thin Solid Films 519 1540
[24] Jung S G, Lee N H, Choi E M, Kang W N, Lee S I, Hwang T J, Kim D H 2010 Physica C: Superconductivity 470 1977
[25] Maeda A, Nabeshima F, Takahashi H, Okada T, Imai Y, Tsukada I, Hanawa M, Komiya S, Ichinose A 2014 Appl. Sur. Sci. 312 43
[26] Shiogai J, Ito Y, Mitsuhashi T, Nojima T, Tsukazaki A 2015 Nature Phys. 12 42
[27] Schneider R, Zaitsev A G, Fuchs D, v Lhneysen H 2012 Phys. Rev. Lett. 108 257003
[28] Qiu W, Ma Z, Patel D, Sang L, Cai C, Shahriar Al Hossain M, Cheng Z, Wang X, Dou S X 2017 ACS Appl. Mater. Interfaces 9 37446
[29] Wang M J, Luo J Y, Huang T W, Chang H H, Chen T K, Hsu F C, Wu C T, Wu P M, Chang A M, Wu M K 2009 Phys. Rev. Lett. 103 117002
[30] Wu M K, Hsu F C, Yeh K W, Huang T W, Luo J Y, Wang M J, Chang H H, Chen T K, Rao S M, Mok B H, Chen C L, Huang Y L, Ke C T, Wu P M, Chang A M, Wu C T, Perng T P 2009 Physica C: Superconductivity 469 340
[31] Tsukada A, Luna K E, Hammond R H, Beasley M R, Zhao J F, Risbud S H 2011 Applied Physics A 104 311
[32] Schneider R, Zaitsev A G, Fuchs D, v. Lhneysen H 2015 The European Physical Journal B 88 14
[33] Nabeshima F, Imai Y, Hanawa M, Tsukada I, Maeda A 2013 Appl. Phys. Lett. 103 172602
[34] Imai Y, Sawada Y, Nabeshima F, Maeda A 2015 Proc. Natl. Acad. Sci. USA 112 1937
[35] Qiu W, Ma Z, Liu Y, Wang X, Dou S X 2015 arXiv 1512.00352
[36] Imai Y, Sawada Y, Asami D, Nabeshima F, Maeda A 2016 Physica C: Superconductivity and its Applications 530 24
[37] Li L, Yang Z R, Sun Y P, Zhang J Y, Shen D Z, Zhang Y H 2011 Supercond. Sci. Tech. 24 015010
[38] Demura S, Ozaki T, Okazaki H, Mizuguchi Y, Kawasaki Y, Deguchi K, Watanabe T, Hara H, Yamaguchi T, Takeya H, Takano Y 2012 Journal of the Physical Society of Japan 81 043702
[39] Demura S, Okazaki H, Ozaki T, Hara H, Kawasaki Y, Deguchi K, Watanabe T, Denholme S J, Mizuguchi Y, Yamaguchi T, Takeya H, Takano Y 2013 Solid State Communications 154 40
[40] Tkachenko O, Morawski A, Zaleski A J, Przyslupski P, Dietl T, Diduszko R, Presz A, Werner-Malento K 2009 Journal of Superconductivity and Novel Magnetism 22 599
[41] Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L, Jia J F, Hung H H, Wu C, Ma X, Chen X, Xu Q K 2011 Science 332 1410
[42] Song C L, Wang Y L, Jiang Y P, Li Z, Wang L L, He K, Chen X, Ma X C, Xue Q K 2011 Phys. Rev. B 84 020503
[43] Feng Z P, Yuan J, He G, Hu W, Lin Z F, Li D, Jiang X Y, Huang Y L, Ni S L, Li J, Zhu B Y, Dong X L, Zhou F, Wang H B, Zhao Z X, Jin K 2018 Sci. Rep. 8 4039
[44] Springer-Materials https://materials.springer.com/isp/ phase-diagram/docs/c_0901080[2018-5-1]
[45] Feng Z, Yuan J, Li J, Wu X, Hu W, Shen B, Qin M, Zhao L, Zhu B, Stanev V, Liu M, Zhang G, Dong X, Zhou F, Zhou X, Hu J, Takeuchi I, Zhao Z, Jin K 2018 arXiv 1807.01273
[46] Tsukada I, Ichinose A, Nabeshima F, Imai Y, Maeda A 2016 AIP Advances 6 095314
[47] Ohnishi T, Lippmaa M, Yamamoto T, Meguro S, Koinuma H 2005 Appl. Phys. Lett. 87 241919
[48] Nakayama K, Miyata Y, Phan G N, Sato T, Tanabe Y, Urata T, Tanigaki K, Takahashi T 2014 Phys. Rev. Lett. 113 237001
[49] Watson M D, Yamashita T, Kasahara S, Knafo W, Nardone M, Beard J, Hardy F, McCollam A, Narayanan A, Blake S F, Wolf T, Haghighirad A A, Meingast C, Schofield A J, Lohneysen H, Matsuda Y, Coldea A I, Shibauchi T 2015 Phys. Rev. Lett. 115 027006
[50] Shen B, Feng Z P, Huang J W, Hu Y, Gao Q, Li C, Xu Y, Liu G D, Yu L, Zhao L, Jin K, Zhou X J 2017 Chin. Phys. B 26 077402
Catalog
Metrics
- Abstract views: 7149
- PDF Downloads: 324
- Cited By: 0