-
Optical microcavity can confine light into a small volume by resonant recirculation. Devices based on optical microcavities are already indispensable for a wide range of applications and studies. They not only apply to traditional optics, but also have broad application prospects in quantum information and integrated optoelectronic chips. In quantum optical devices, microcavity can cause atoms or quantum dots to emit spontaneous photons in a desired direction or can provide an environment where dissipative mechanisms such as spontaneous emission are overcome so that quantum entanglement of radiation and matter is possible. For better application in quantum communication, optical microcavity needs to have a high quality factor and a low mode volume. Considering the beam coupling, spot shape and experimental production and others, the Fabry-Perot (F-P) microcavity has been widely applied to the field of optoelectronics. However, the Q-factor of the F-P microcavity is generally low, and the mode volume is large, so it needs to be improved.In addition, high Q-factor microcavity can also play a large role in detecting particles and biological macromolecules.In this paper, through the theory of wave optics, the eigenmodes of a new type of cone-top cylindrical optical micro-cavity are analyzed, and the resonant wavelength expression of the resonant cavity is obtained. We discuss the effects of the top mirror angle on the resonator performance and application of COMSOL simulation software to verify the proposed cone-top cylindrical microcavity. The optimized design and simulation results show that the quality factor of the new resonator can be increased by 22.4% to 49928.5 and the effective mode volume of the resonator can be reduced by 47.8% compared with the traditional parallel resonator. In this case, the corresponding new cavity length is 4.51 μm and the diameter is 3.13 μm. In this article its fabrications are also discussed.
-
Keywords:
- optical microcavity /
- microcavity mode /
- quality factor /
- mode volume
[1] Zhang Y, Chen M X, Li Y Y, Yuan J 2015 Laser Optoelectron. Prog. 52 11 (in Chinese) [张莹, 陈梅雄, 李莹颖, 袁杰 2015 激光与光电子学进展 52 11]
[2] Vahala K J 2003 Nature 424 839
[3] Wang Q, Huang Y, Ren X 2001 Proceedings of SPIE–the International Society for Optical Engineering 4580 577
[4] Liu K, Huang Y Q, Ren X M 2000 Appl. Opt. 39 423
[5] Cao S, Xu X L 2014 Physics 43 740 (in Chinese) [曹硕, 许秀来 2014 物理 43 740]
[6] Kim J, Benson O, Kan H, Yamamoto Y 1999 Nature 397 500
[7] He Y M, He Y, Wei Y J, Wu D, Atatre M, Schneider C, Höfling S, Kamp M, Lu C Y, Pan J W 2013 Nat. Nanotech. 8 213
[8] Löffler A, Reithmaier J P, Sek G, Hofmann C, Reitzenstein S, Kamp M, Forchel A 2005 Appl. Phys. Lett. 86 111105
[9] Strauf S, Stoltz N G, Rakher M T, Coldren L A, Petroff P M, Bouwmeester D 2007 Nat. Photon. 1 704
[10] Kryzhanovskaya N V, Maximov M V, Zhukov A, Nadtochiy A M, Moiseev E I, Shostak I I, Kulagina M M, Vashanova K A, Zadiranov Y M, Troshkov S I, Nevedomsky V V, Ruvimov S A, Lipovskii A A, Kalyuzhnyy N A, Mintairov S A 2015 J. Lightw. Technol. 33 171
[11] Campenhout J V, Romeo P R, Thourhout D V, Seassal C, Regreny P, Cioccio L D, Fedeli J M, Baets R 2008 J. Lightw. Technol. 26 52
[12] Ma X W, Huang Y Z, Long H, Yang Y D, Wang F L, Xiao J L, Du Y 2016 J. Lightw. Technol. 34 5263
[13] Albert F, Hopfmann C, Eberspacher A, Amold F, Emmerling M, Schneider C, Höfling S, Forchel A, Kamp M, Wiersig J, Reitzenstein S 2012 Appl. Phys. Lett. 101 245
[14] Ma C S, Liu S Y 2006 Optical Waveguide Mode Theory (Changchun: Jilin University Press) pp16-18 (in Chinese) [马春生, 刘式墉 2006 光波导模式理论(长春: 吉林大学出版社) 第16–18页]
[15] Song H Z, Takemoto K, Miyazawa T, Takatsu M, Iwamoto S, Yamamoto T, Arakawa Y 2013 Opt. Lett. 38 3241
[16] Li H H, Wang Q K 2009 Acta Sin. Quantum Opt. 15 380 (in Chinese) [黎慧华, 王庆康 2009 量子光学学报 15 380]
[17] Macleod H A (translated by Xu D G) 2016 Thin-Film Optical Filters (Fourth Edition) (Beijing: Science Press) p32 (in Chinese) [安格斯·麦克劳德H. 著 (徐德纲 译) 2016 薄膜光学 (北京: 科学出版社)第32页]
[18] Fang H L 2014 Optical Resonant Cavity and Gravitational Wave Detection (Beijing: Science Press) p17 (in Chinese) [方洪烈 2014 光学谐振腔与引力波探测(北京: 科学出版社) 第17 页]
[19] Han J, Li J J, Deng J, Xing Y H, Yu X D, Lin W Z, Liu Y, Shen G D 2008 J. Optoelectronics Laser 19 456 (in Chinese) [韩军, 李建军, 邓军, 邢艳辉, 于晓东, 林委之, 刘莹, 沈光地 2008 光电子·激光 19 456]
[20] Wang Q, Huang H, Wang X Y, Ren A G, Wu P, Huang C, Huang Y Q, Ren X M 2005 Chin. J. Lasers 32 1045 (in Chinese) [王琦, 黄辉, 王兴妍, 任爱光, 武鹏, 黄成, 黄永清, 任晓敏 2005 中国激光 32 1045]
[21] Huang H, Huang Y, Ren X 2003 Electron. Lett. 39 113
-
[1] Zhang Y, Chen M X, Li Y Y, Yuan J 2015 Laser Optoelectron. Prog. 52 11 (in Chinese) [张莹, 陈梅雄, 李莹颖, 袁杰 2015 激光与光电子学进展 52 11]
[2] Vahala K J 2003 Nature 424 839
[3] Wang Q, Huang Y, Ren X 2001 Proceedings of SPIE–the International Society for Optical Engineering 4580 577
[4] Liu K, Huang Y Q, Ren X M 2000 Appl. Opt. 39 423
[5] Cao S, Xu X L 2014 Physics 43 740 (in Chinese) [曹硕, 许秀来 2014 物理 43 740]
[6] Kim J, Benson O, Kan H, Yamamoto Y 1999 Nature 397 500
[7] He Y M, He Y, Wei Y J, Wu D, Atatre M, Schneider C, Höfling S, Kamp M, Lu C Y, Pan J W 2013 Nat. Nanotech. 8 213
[8] Löffler A, Reithmaier J P, Sek G, Hofmann C, Reitzenstein S, Kamp M, Forchel A 2005 Appl. Phys. Lett. 86 111105
[9] Strauf S, Stoltz N G, Rakher M T, Coldren L A, Petroff P M, Bouwmeester D 2007 Nat. Photon. 1 704
[10] Kryzhanovskaya N V, Maximov M V, Zhukov A, Nadtochiy A M, Moiseev E I, Shostak I I, Kulagina M M, Vashanova K A, Zadiranov Y M, Troshkov S I, Nevedomsky V V, Ruvimov S A, Lipovskii A A, Kalyuzhnyy N A, Mintairov S A 2015 J. Lightw. Technol. 33 171
[11] Campenhout J V, Romeo P R, Thourhout D V, Seassal C, Regreny P, Cioccio L D, Fedeli J M, Baets R 2008 J. Lightw. Technol. 26 52
[12] Ma X W, Huang Y Z, Long H, Yang Y D, Wang F L, Xiao J L, Du Y 2016 J. Lightw. Technol. 34 5263
[13] Albert F, Hopfmann C, Eberspacher A, Amold F, Emmerling M, Schneider C, Höfling S, Forchel A, Kamp M, Wiersig J, Reitzenstein S 2012 Appl. Phys. Lett. 101 245
[14] Ma C S, Liu S Y 2006 Optical Waveguide Mode Theory (Changchun: Jilin University Press) pp16-18 (in Chinese) [马春生, 刘式墉 2006 光波导模式理论(长春: 吉林大学出版社) 第16–18页]
[15] Song H Z, Takemoto K, Miyazawa T, Takatsu M, Iwamoto S, Yamamoto T, Arakawa Y 2013 Opt. Lett. 38 3241
[16] Li H H, Wang Q K 2009 Acta Sin. Quantum Opt. 15 380 (in Chinese) [黎慧华, 王庆康 2009 量子光学学报 15 380]
[17] Macleod H A (translated by Xu D G) 2016 Thin-Film Optical Filters (Fourth Edition) (Beijing: Science Press) p32 (in Chinese) [安格斯·麦克劳德H. 著 (徐德纲 译) 2016 薄膜光学 (北京: 科学出版社)第32页]
[18] Fang H L 2014 Optical Resonant Cavity and Gravitational Wave Detection (Beijing: Science Press) p17 (in Chinese) [方洪烈 2014 光学谐振腔与引力波探测(北京: 科学出版社) 第17 页]
[19] Han J, Li J J, Deng J, Xing Y H, Yu X D, Lin W Z, Liu Y, Shen G D 2008 J. Optoelectronics Laser 19 456 (in Chinese) [韩军, 李建军, 邓军, 邢艳辉, 于晓东, 林委之, 刘莹, 沈光地 2008 光电子·激光 19 456]
[20] Wang Q, Huang H, Wang X Y, Ren A G, Wu P, Huang C, Huang Y Q, Ren X M 2005 Chin. J. Lasers 32 1045 (in Chinese) [王琦, 黄辉, 王兴妍, 任爱光, 武鹏, 黄成, 黄永清, 任晓敏 2005 中国激光 32 1045]
[21] Huang H, Huang Y, Ren X 2003 Electron. Lett. 39 113
Catalog
Metrics
- Abstract views: 8555
- PDF Downloads: 268
- Cited By: 0