搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光学微腔中倍频光场演化和光谱特性

徐昕 金雪莹 胡晓鸿 黄新宁

引用本文:
Citation:

光学微腔中倍频光场演化和光谱特性

徐昕, 金雪莹, 胡晓鸿, 黄新宁

Spatiotemporal evolution and spectral character of second harmonic generation in optical microresonator

Xu Xin, Jin Xue-Ying, Hu Xiao-Hong, Huang Xin-Ning
PDF
HTML
导出引用
  • 在考虑光学微腔中二阶和三阶非线性效应的情况下, 引入了可同时描述腔内基频和倍频光场的演化过程的Lugiato-Lefeve方程, 分析了SiN微腔中二次谐波的产生, 并讨论了各参数对腔内基频和倍频光场的影响. 理论分析结果表明, 失谐参量为0时, 稳定后的基频光场为平顶脉冲的形式, 而倍频光场呈正弦分布; 失谐参量增加, 将导致腔内基频和倍频光功率在演化过程中出现振荡, 且最终稳定的光功率变弱, 稳定后的光场分布为周期性变化; 失谐参量的值过大, 会使得微腔光场处于混沌状态. 抽运光强较弱时, 腔内可形成稳定的光场分布; 抽运光强较强时, 会导致腔内色散以及非线性效应过强, 最终稳定的光场仍然呈周期性变化, 且抽运光功率越强, 光功率的演化曲线振荡越强. 此外, 选取特定的微腔尺寸, 微腔可工作于“图灵环”状态. 理论分析结果对研究光学微腔中二次谐波的产生有重要意义.
    With the consideration of the second and the third order nonlinear effect, the Lugiato-Lefeve equation which describes the field evolution of the fundamental frequency wave and the second harmonic wave is introduced. Based on the Lugiato-Lefeve equation, the generation of the second harmonic wave in the SiN microresonator is analyzed, and the effect of the each parameter on the dual field is studied. Simulation results indicate that the stable field of the fundamental frequency wave is of flat top pulse, and the field of the second harmonic wave is of sinusoidal distribution. When the detuning parameter increases, the power of the dual wave inside the microresonator oscillates, and the stable power weakens, the stable light field is periodically varied. Moreover, the chaos emerges as detuning parameter becomes large. The stable field can be generated in the microresonator with the weak pump power. However, because of the high pump power, the dispersion and nonlinear effect are enhanced, resulting in the periodic light field. Furthermore, the oscillation of the dual power curve is aggravated, as the pump power increases. In addition, the turning patterns can be observed by choosing the special dimension of microresonator. Theoretical analysis results are significant for studying the generation of the second harmonic wave in the microresonator.
      通信作者: 金雪莹, xyjin007@hfut.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 51705121)和瞬态光学与光子技术国家重点实验室开放基金(批准号: SKLST201612)资助的课题
      Corresponding author: Jin Xue-Ying, xyjin007@hfut.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51705121) and the Open Research Fund of the State Key Laboratory of Transient Optics and Photonics, Chinese Academy of Sciences (Grant No. SKLST201612)
    [1]

    邢书剑, 张福民, 曹士英, 王高文, 曲兴华 2013 62 170603Google Scholar

    Xing S J, Zhang F M, Cao S Y, Wang G W, Qu X H 2013 Acta Phys. Sin. 62 170603Google Scholar

    [2]

    Niering M, Holzwarth R, Reichert J, Pokasov P, Udem T, Weitz M, Hansch T W, Lemonde P, Santarelli G, Abgrall M, Laurent P, Salomon C, Clairon A 2000 Phys. Rev. Lett. 84 5496Google Scholar

    [3]

    孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军 2011 60 100601Google Scholar

    Meng F, Cao S Y, Cai Y, Wang G Z, Cao J P, Li T C, Fang Z J 2011 Acta Phys. Sin. 60 100601Google Scholar

    [4]

    Swann W C, McFerran J J, Coddington I, Newbury N R, Hartl I, Fermann M E, Westbrook P S, Nicholson J W, Feder K S, Langrock C, Fejer M M 2006 Opt. Lett. 31 3074

    [5]

    Washburn B R, Fox R W, Newbury N R, Nicholson J W, Feder K, Westbrook P S, Jorgensen C G 2004 Opt. Express 12 4999Google Scholar

    [6]

    韩海年, 魏志义, 赵刚 2012 物理 41 249

    Han H N, Wei Z Y, Zhao G 2012 Physics 41 249

    [7]

    Herr T, Brasch V, Jost J D, Wang C Y, Kondratiev N M, Gorodetsky M L, Kippenberg T J 2013 Nat. Photon. 8 145

    [8]

    Song Q H 2019 Sci. China-Phys. Mech. Astron. 62 074231Google Scholar

    [9]

    Zhang X Y, Cao Q T, Wang Z, Liu Y X, Qiu C W, Yang L, Gong Q H, Xiao Y F 2019 Nat. Photon. 13 21Google Scholar

    [10]

    Godey C, Balakireva I V, Aurélien C, Chembo Y K 2014 Phys. Rev. A 89 722

    [11]

    Huang S W, Zhou H, Yang J, McMillan J F, Matsko A, Yu M, Kwong D L, Maleki L, Wong C W 2014 Phys. Rev. Lett. 114 053901

    [12]

    Wang W Q, Lu Z Z, Zhang W F, Chu Sai T, Little B E, Wang L R, Xie X P, Liu M L, Yang Q H, Wang L, Zhao J G, Wang G X, Sun Q B, Liu Y S, Wang Y S, Zhao W 2018 Opt. Lett. 43 2002Google Scholar

    [13]

    Xue X X, Xuan Y, Liu Y, Wang P H, Chen S, Wang J, Leaird D E, Qi M H, Weiner A M 2015 Nat. Photon. 9 594Google Scholar

    [14]

    Coillet A, Balakireva I, Henriet R, Saleh K, Larger L, Dudley J M, Menyuk C R, Chembo Y K 2013 IEEE Photon. J. 5 6100409Google Scholar

    [15]

    Matsko A B, Liang W, Savchenkov A A, Maleki L 2013 Opt. Lett. 38 525Google Scholar

    [16]

    Coen S, Randle H G, Sylvestre T, Erkintalo M 2013 Opt. Lett. 38 37Google Scholar

    [17]

    Xue X X, Leo F, Xuan Y, Villegas J A J, Wang P H, Leaird D E, Erkintalo M, Qi M H, Weiner Andrew M 2017 Light: Sci. Appl. 6 e16253Google Scholar

    [18]

    Lin J T, Xu Y X, Ni J L, Wang M, Fang Z W, Qiao L L, Fang W, Cheng Y 2016 Phys. Rev. Appl. 6 014002Google Scholar

    [19]

    Chembo Y K, Menyuk C R, 2014 Phys. Rev. A 87 053852

    [20]

    Lin J T, Xu Y X, Fang Z W, Wang M, Song J X, Wang N W, Qiao L L, Fang W, Cheng Y 2015 Sci. China-Phys. Mech. Astron. 58 114209Google Scholar

    [21]

    Coen S, Haelterman M 2001 Opt. Lett. 26 39Google Scholar

    [22]

    And T, Boccaletti A, Grebogi C, Lai Y C, Mancini H, Maza D 2000 Phys. Rep. 329 2000

    [23]

    Akhmediev N, Pelinovsky E 2010 Eur. Phys. J. Spec. Top. 185 1Google Scholar

  • 图 1  SiN微腔结构示意图

    Fig. 1.  Structure of the SiN microresonator.

    图 2  SiN光学微腔中二次谐波的产生 (δ1 = 0, Ein = 1 W1/2) (a) 倍频光场在腔内的演化过程; (b) 基频光功率随光在腔内循环次数的变化曲线; (c) 倍频光功率随光在腔内循环次数的变化曲线; (d)基频场的稳定分布; (e)倍频光场的稳定分布; (f)基频光的光谱; (g) 基频光的光谱

    Fig. 2.  Second harmonic waves generates inside the SiN microresonator (δ1 = 0, Ein = 1 W1/2): (a) Evolution of the second harmonic waves; (b) curves of the fundamental frequency waves power and (c) the second frequency waves power vary with the round trip number; (d) stationary distribution of the fundamental frequency waves light field and (e) the second frequency waves light field; (f) spectra of the fundamental frequency waves and (g) the second frequency waves.

    图 3  发生频率失谐后, 微腔内光场变化情况 (δ1 = 0.1, Ein = 1 W1/2) (a) 基频光功率和(b)倍频光功率随光在腔内循环次数的变化曲线; 光场稳定后, (c)基频光场和(d)倍频光场随时间的演化; (e) 基频光场和(f)倍频广场的稳定分布

    Fig. 3.  Light field evolution in the microresonator with the frequency detuning (δ1 = 0.1 and Ein = 1 W1/2): (a) Curves of the fundamental frequency waves power and (b) the second frequency waves power vary with the round trip number; evolution of (c) the fundamental frequency waves (d) the second frequency waves after the light fields are stable; stationary distribution of (e) the fundamental frequency waves light field and (f) the second frequency waves light field.

    图 4  失谐参量δ1取不同值时, 微腔内基频光和倍频光功率变化曲线 (a) 0.02 ≤ δ1 ≤ 0.08时, 基频光功率变化曲线; (b) 0.2 ≤ δ1 ≤ 0.8时, 基频光功率变化曲线; (c) 0.02 ≤ δ1 ≤ 0.08时, 倍频光功率变化曲线; (d) 0.2 ≤ δ1 ≤ 0.8时, 倍频光功率变化曲线

    Fig. 4.  Influence of the frequency detuning δ1 on the power change curves: (a) Curves of the power variation for the fundamental frequency waves, 0.02 ≤ δ1 ≤ 0.08; (b) curves of the power variation for the fundamental frequency waves, 0.2 ≤ δ1 ≤ 0.8; (c) curves of the power variation for the second harmonic waves, 0.02 ≤ δ1 ≤ 0.08; (d) curves of the power variation for the second harmonic waves, 0.2 ≤ δ1 ≤ 0.8.

    图 5  失谐参量δ1 = 1时, 腔内光场稳定后基频光和倍频光的光场演化 (a) 基频光场的演化; (b) 倍频光场的演化; (c) 基频光光场变化周期内, 光在腔内每循环100次, 绘制其波形; (d) 倍频光光场变化周期内, 光在腔内每循环100次, 绘制其波形

    Fig. 5.  Stable evolution of the dual light fields when δ1 = 1: (a) Evolution of the fundamental frequency waves; (b) evolution of the second harmonic waves; (c) intensity profiles of the fundamental frequency waves at six different moments within a period, the waveforms are plotted every hundred times; (d) intensity profiles of the second harmonic waves at six different moments within a period, the waveforms are plotted every hundred times.

    图 6  失谐参量δ1取值过大时, 腔内光场的混沌状态 (a) 基频光光场的混沌状态; (b) 倍频光光场的混沌状态; (c) 某一时刻基频光场的分布; (d) 某一时刻倍频光场的分布; (e) 与图(c)中光场对应的基频光光谱; (f) 与图(d)中光场对应的倍频光光谱

    Fig. 6.  Chaos inside the microresonator, when the value of detuning parameter is too large: (a) Chaos of the fundamental frequency waves; (b) chaos of the second harmonic waves; (c) intensity profile of the fundamental frequency waves in a moment; (d) intensity profile of the second harmonic waves in a moment; (e) spectrum of the fundamental frequency waves; (f) spectrum of the second harmonic waves.

    图 7  抽运功率对腔内光功率的影响 (a)腔内基频光功率的变化情况; (b)腔内倍频光功率的变化情况

    Fig. 7.  Influence of the pump power on the power change curves: (a) Power variation for the fundamental frequency waves; (b) power variation for the second harmonic waves.

    图 8  Ein = 100 W1/2时, 微腔内光场的演化 (a) 基频光功率的变化曲线; (b) 倍频光功率的变化曲线; (c) 光场稳定后, 腔内基频光光场的周期性演化; (d) 光场稳定后, 腔内倍频光光场的周期性演化

    Fig. 8.  Evolution of the light field in the microresonator at Ein = 100 W1/2: (a) Curve of power variation for the fundamental frequency waves; (b) curve of power variation for the second harmonic waves; (c) periodic evolution of the fundamental frequency waves; (d) periodic evolution of the second harmonic waves.

    图 9  基频光和倍频光的功率变化曲线 Ein = 800 W1/2时(a)基频光和(b)倍频光的功率变化; Ein = 1000 W1/2时(c)基频光和(d) 倍频光的功率变化; Ein = 1200 W1/2时(e)基频光和(f)倍频光的功率变化

    Fig. 9.  Curves of the power variation for the fundamental frequency waves and the second harmonic waves: Power variation for (a) the fundamental frequency waves and (b) the second harmonic waves at Ein = 800 W1/2; power variation for (c) the fundamental frequency waves and (d) the second harmonic waves at Ein = 1000 W1/2; power variation for (e) the fundamental frequency waves and (f) the second harmonic waves at Ein = 1200 W1/2.

    图 10  微腔FSR = 300 GHz时, 微腔内出现“图灵环”(Ein = 100 W1/2, δ1 = 0.1) (a)基频光功率变化曲线; (b)倍频光功率变化曲线; (c) 腔内光场稳定后, 基频光光场随时间的演化; (d) 腔内光场稳定后, 倍频光光场随时间的演化; (e) 腔内光场稳定后, 基频光的光谱; (f) 腔内光场稳定后, 倍频光的光谱

    Fig. 10.  Turning patterns in the microresonator, when FSR = 300 GHz (Ein = 100 W1/2, δ1 = 0.1): (a) Curves of the power variation for the fundamental frequency waves; (b) curves of the power variation for the second harmonic waves; (c) evolution of the fundamental frequency waves; (d) evolution of the second harmonic waves; (e)spectra of the fundamental harmonic waves; (f) spectra of the second harmonic waves.

    图 11  微腔FSR = 298 GHz时, 稳定后的光场分布及光谱 (a)基频光的光场分布; (b) 倍频光的光场分布; (c) 基频光光谱; (d) 倍频光光谱

    Fig. 11.  Stable intensity profile and spectra of the fundamental frequency waves for FSR = 298 GHz: (a) Intensity profile of the fundamental frequency waves; (c) spectrum of the fundamental frequency waves; (b) intensity profile of second harmonic waves; (d) spectrum of second harmonic waves.

    图 12  微腔FSR = 295 GHz时, 稳定后的基频光和倍频光光场分布及光谱 (a) 基频光光场随时间的演化; (b) 倍频光光场随时间的演化; (c) 基频光场的瞬时分布; (d) 倍频光场的瞬时分布; (e) 基频光场的光谱; (f) 倍频光场的光谱

    Fig. 12.  Stable intensity profile and spectra of the fundamental frequency waves for FSR = 295 GH: (a) Evolution of the fundamental frequency waves; (b) evolution of the second frequency waves; (c) intensity profile of the fundamental frequency waves; (d) spectrum of the fundamental frequency waves; (e) intensity profile of the second harmonic waves; (f) spectrum of the second harmonic waves.

    Baidu
  • [1]

    邢书剑, 张福民, 曹士英, 王高文, 曲兴华 2013 62 170603Google Scholar

    Xing S J, Zhang F M, Cao S Y, Wang G W, Qu X H 2013 Acta Phys. Sin. 62 170603Google Scholar

    [2]

    Niering M, Holzwarth R, Reichert J, Pokasov P, Udem T, Weitz M, Hansch T W, Lemonde P, Santarelli G, Abgrall M, Laurent P, Salomon C, Clairon A 2000 Phys. Rev. Lett. 84 5496Google Scholar

    [3]

    孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军 2011 60 100601Google Scholar

    Meng F, Cao S Y, Cai Y, Wang G Z, Cao J P, Li T C, Fang Z J 2011 Acta Phys. Sin. 60 100601Google Scholar

    [4]

    Swann W C, McFerran J J, Coddington I, Newbury N R, Hartl I, Fermann M E, Westbrook P S, Nicholson J W, Feder K S, Langrock C, Fejer M M 2006 Opt. Lett. 31 3074

    [5]

    Washburn B R, Fox R W, Newbury N R, Nicholson J W, Feder K, Westbrook P S, Jorgensen C G 2004 Opt. Express 12 4999Google Scholar

    [6]

    韩海年, 魏志义, 赵刚 2012 物理 41 249

    Han H N, Wei Z Y, Zhao G 2012 Physics 41 249

    [7]

    Herr T, Brasch V, Jost J D, Wang C Y, Kondratiev N M, Gorodetsky M L, Kippenberg T J 2013 Nat. Photon. 8 145

    [8]

    Song Q H 2019 Sci. China-Phys. Mech. Astron. 62 074231Google Scholar

    [9]

    Zhang X Y, Cao Q T, Wang Z, Liu Y X, Qiu C W, Yang L, Gong Q H, Xiao Y F 2019 Nat. Photon. 13 21Google Scholar

    [10]

    Godey C, Balakireva I V, Aurélien C, Chembo Y K 2014 Phys. Rev. A 89 722

    [11]

    Huang S W, Zhou H, Yang J, McMillan J F, Matsko A, Yu M, Kwong D L, Maleki L, Wong C W 2014 Phys. Rev. Lett. 114 053901

    [12]

    Wang W Q, Lu Z Z, Zhang W F, Chu Sai T, Little B E, Wang L R, Xie X P, Liu M L, Yang Q H, Wang L, Zhao J G, Wang G X, Sun Q B, Liu Y S, Wang Y S, Zhao W 2018 Opt. Lett. 43 2002Google Scholar

    [13]

    Xue X X, Xuan Y, Liu Y, Wang P H, Chen S, Wang J, Leaird D E, Qi M H, Weiner A M 2015 Nat. Photon. 9 594Google Scholar

    [14]

    Coillet A, Balakireva I, Henriet R, Saleh K, Larger L, Dudley J M, Menyuk C R, Chembo Y K 2013 IEEE Photon. J. 5 6100409Google Scholar

    [15]

    Matsko A B, Liang W, Savchenkov A A, Maleki L 2013 Opt. Lett. 38 525Google Scholar

    [16]

    Coen S, Randle H G, Sylvestre T, Erkintalo M 2013 Opt. Lett. 38 37Google Scholar

    [17]

    Xue X X, Leo F, Xuan Y, Villegas J A J, Wang P H, Leaird D E, Erkintalo M, Qi M H, Weiner Andrew M 2017 Light: Sci. Appl. 6 e16253Google Scholar

    [18]

    Lin J T, Xu Y X, Ni J L, Wang M, Fang Z W, Qiao L L, Fang W, Cheng Y 2016 Phys. Rev. Appl. 6 014002Google Scholar

    [19]

    Chembo Y K, Menyuk C R, 2014 Phys. Rev. A 87 053852

    [20]

    Lin J T, Xu Y X, Fang Z W, Wang M, Song J X, Wang N W, Qiao L L, Fang W, Cheng Y 2015 Sci. China-Phys. Mech. Astron. 58 114209Google Scholar

    [21]

    Coen S, Haelterman M 2001 Opt. Lett. 26 39Google Scholar

    [22]

    And T, Boccaletti A, Grebogi C, Lai Y C, Mancini H, Maza D 2000 Phys. Rep. 329 2000

    [23]

    Akhmediev N, Pelinovsky E 2010 Eur. Phys. J. Spec. Top. 185 1Google Scholar

  • [1] 胡生润, 季学强, 王进进, 阎结昀, 张天悦, 李培刚. 基于Ga2O3-SiC-Ag多层结构的介电常数近零超低开关阈值光学双稳态器件.  , 2024, 73(5): 054201. doi: 10.7498/aps.73.20231534
    [2] 张晓莉, 王庆伟, 姚文秀, 史少平, 郑立昂, 田龙, 王雅君, 陈力荣, 李卫, 郑耀辉. 热透镜效应对半整块腔型中二次谐波过程的影响.  , 2022, 71(18): 184203. doi: 10.7498/aps.71.20220575
    [3] 许凡, 赵妍, 吴宇航, 王文驰, 金雪莹. 高阶色散下双耦合微腔中克尔光频梳的稳定性和非线性动力学分析.  , 2022, 71(18): 184204. doi: 10.7498/aps.71.20220691
    [4] 郭绮琪, 陈溢杭. 基于介电常数近零模式与间隙表面等离激元强耦合的增强非线性光学效应.  , 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [5] 李海鹏, 周佳升, 吉炜, 杨自强, 丁慧敏, 张子韬, 沈晓鹏, 韩奎. 边界对石墨烯量子点非线性光学性质的影响.  , 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [6] 白瑞雪, 杨珏晗, 魏大海, 魏钟鸣. 低维半导体材料在非线性光学领域的研究进展.  , 2020, 69(18): 184211. doi: 10.7498/aps.69.20200206
    [7] 徐昕, 金雪莹, 高浩然, 程杰, 陆洋, 陈东, 于连栋. 耦合光学微腔的频率调谐过程分析.  , 2020, 69(18): 184207. doi: 10.7498/aps.69.20200530
    [8] 关晓通, 傅文杰, 鲁钝, 杨同斌, 鄢扬, 袁学松. 双共焦波导结构二次谐波太赫兹回旋管谐振腔设计.  , 2020, 69(6): 068401. doi: 10.7498/aps.69.20191222
    [9] 曾周晓松, 王笑, 潘安练. 二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强.  , 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [10] 谷红明, 黄永清, 王欢欢, 武刚, 段晓峰, 刘凯, 任晓敏. 一种新型光学微腔的理论分析.  , 2018, 67(14): 144201. doi: 10.7498/aps.67.20180067
    [11] 邓俊鸿, 李贵新. 非线性光学超构表面.  , 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [12] 杜金锦, 李文芳, 文瑞娟, 李刚, 张天才. 超高精细度微光学腔共振频率及有效腔长的精密测量.  , 2013, 62(19): 194203. doi: 10.7498/aps.62.194203
    [13] 程正富, 龙晓霞, 郑瑞伦. 温度对光学微腔光子激子系统玻色凝聚的影响.  , 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [14] 黄晓明, 陶丽敏, 郭雅慧, 高 云, 王传奎. 一种新型双共轭链分子非线性光学性质的理论研究.  , 2007, 56(5): 2570-2576. doi: 10.7498/aps.56.2570
    [15] 杨 光, 陈正豪. 掺Ag纳米颗粒的BaTiO3复合薄膜的非线性光学特性.  , 2007, 56(2): 1182-1187. doi: 10.7498/aps.56.1182
    [16] 陈 亮, 梁昌洪, 党晓杰. 非线性左手材料中的二次谐波.  , 2007, 56(11): 6398-6402. doi: 10.7498/aps.56.6398
    [17] 梁小蕊, 赵 波, 周志华. 几种香豆素衍生物分子的二阶非线性光学性质的从头算研究.  , 2006, 55(2): 723-728. doi: 10.7498/aps.55.723
    [18] 张明昕, 吴克琛, 刘彩萍, 韦永勤. 密度泛函交换关联势与过渡金属化合物光学非线性的计算研究.  , 2005, 54(4): 1762-1770. doi: 10.7498/aps.54.1762
    [19] 刘涛, 张天才, 王军民, 彭堃墀. 高精细度光学微腔中原子的偶极俘获.  , 2004, 53(5): 1346-1351. doi: 10.7498/aps.53.1346
    [20] 倪培根, 马博琴, 程丙英, 张道中. 二维LiNbO3非线性光子晶体.  , 2003, 52(8): 1925-1928. doi: 10.7498/aps.52.1925
计量
  • 文章访问数:  9211
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-26
  • 修回日期:  2019-09-24
  • 上网日期:  2020-01-01
  • 刊出日期:  2020-01-20

/

返回文章
返回
Baidu
map