-
Micro-cavities play an important role in the light-matter interaction. The cross section of wurtzite-structured ZnO microwire is a hexagon, which gives a high quality factor. Exciton-polariton, micro-and nanowire lasers and polariton condensation have been investigated using the micro-cavities of ZnO microwires at room temperature. Strain, which changes the dielectric index of a material, is one of the methods to tune the interaction between the light and the matter. In this work, the photoluminescence spectra of strain free and bent ZnO microwires are measured across the wires, and the modes shifts are observed only in the bent one near the band edge. Shifting of the cavity modes across the wire can be observed in both TE and TM polarized spectra. For a bent ZnO microwire, the microcavity can be modified by the strain from bending, and the exciton energies may shift due to the strain. The shifted exciton energy induces a change of dielectric constant, resulting in the shifting of the cavity modes across the microwire.
-
Keywords:
- ZnO microwire /
- micro-cavity /
- whispering gallery mode /
- strain
[1] Dai J, Xu C X, Ding R, Zheng K, Shi Z L, Lv C G, Cui Y P 2009 Appl. Phys. Lett. 95 191117
[2] [3] Liu R B, Zou B S 2011 Chin. Phys. B 20 047104
[4] [5] Si X, Su X R Li C, Han Y B, Fang G J Wang Q Q 2008 Chin. Phys. B 17 1291
[6] [7] Dai J, Xu C X, Sun X W 2011 Opt. Commun. 284 4018
[8] Gao Y, Wang Z L 2007 Nano Lett. 7 2499
[9] [10] [11] Kon S, Horowitz R 2008 IEEE Sens. J 8 2027
[12] [13] Wiersig J 2003 Phys. Rev. A 67 023807
[14] [15] van Vugt L K, Rhle S, Ravindran P, Gerritsen H C, Kuipers L, Vanmaekelbergh D 2006 Phys. Rev. Lett 97 147401
[16] Sun L, Chen Z, Ren Q, Yu K, Bai L, Zhou W, Xiong H, Zhu Z, Shen X 2008 Phys. Rev. Lett 100 156403
[17] [18] Xue H, Pan N, Li M, Wu Y, Wang X, Hou J 2010 Nanotechnology 21 215701
[19] [20] Wagner M R, Callsen G, Reparaz J S, Kirste R, Hoffmann A, Rodina A V, Schleife A, Bechstedt F, Phillips M R 2013 Phys. Rev. B 88 235210
[21] [22] [23] Han X, Kou L, Zhang Z, Zhang Z, Zhu X, Xu J, Liao Z, Guo W, Yu D 2012 Adv. Mater 24 4707
[24] Grundmann M, Dietrich C P 2012 Phys. Status. Solidi. B 249 871
[25] [26] Dietrich C, Lange M, Klupfel F, Von Wenckstern H, Schmidt-Grund R, Grundmann M 2011 Appl. Phys. Lett. 98 031105
[27] [28] Xu C, Sun X W, Dong Z L, Yu M 2004 Appl. Phys. Lett. 85 3878
[29] [30] [31] Xu X, Lau S, Chen J, Chen G, Tay B 2001 J. Cryst. Growth 223 201
[32] [33] Korsunska N, Borkovska L, Bulakh B, Khomenkova L Y, Kushnirenko V, Markevich I 2003 J. Lumin. 102 733
[34] [35] Mang A, Reimann K, Rbenacke S 1995 Solid State Commun 94 251
[36] [37] Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M, Dogan S, Avrutin V, Cho S-J, Morkoc H 2005 J. Appl. Phys 98 041301
[38] Xu X, Brossard F S F, Williams D A, Collins D P, Holmes M J, Taylor R A, Zhang X 2009 Appl. Phys. Lett. 94
[39] [40] Xu X, Brossard F S F, Williams D A, Collins D P, Holmes M J, Taylor R A, Zhang X 2010 New J. Phys 12 083052
[41] [42] Nobis T, Kaidashev E M, Rahm A, Lorenz M, Grundmann M 2004 Phys. Rev. Lett. 93 103903
[43] [44] Liao Z M, Wu H C, Fu Q, Fu X W, Zhu X L, Xu J, Shvets I V, Zhang Z H, Guo W L, Leprince Wang Y, Wu X S, Yu D P 2012 Sci. Rep. 2 452
[45] [46] [47] Vedam K, Davis T 1969 Phys. Rev. 181 1196
[48] [49] Lagois J 1981 Phys. Rev. B 23 5511
-
[1] Dai J, Xu C X, Ding R, Zheng K, Shi Z L, Lv C G, Cui Y P 2009 Appl. Phys. Lett. 95 191117
[2] [3] Liu R B, Zou B S 2011 Chin. Phys. B 20 047104
[4] [5] Si X, Su X R Li C, Han Y B, Fang G J Wang Q Q 2008 Chin. Phys. B 17 1291
[6] [7] Dai J, Xu C X, Sun X W 2011 Opt. Commun. 284 4018
[8] Gao Y, Wang Z L 2007 Nano Lett. 7 2499
[9] [10] [11] Kon S, Horowitz R 2008 IEEE Sens. J 8 2027
[12] [13] Wiersig J 2003 Phys. Rev. A 67 023807
[14] [15] van Vugt L K, Rhle S, Ravindran P, Gerritsen H C, Kuipers L, Vanmaekelbergh D 2006 Phys. Rev. Lett 97 147401
[16] Sun L, Chen Z, Ren Q, Yu K, Bai L, Zhou W, Xiong H, Zhu Z, Shen X 2008 Phys. Rev. Lett 100 156403
[17] [18] Xue H, Pan N, Li M, Wu Y, Wang X, Hou J 2010 Nanotechnology 21 215701
[19] [20] Wagner M R, Callsen G, Reparaz J S, Kirste R, Hoffmann A, Rodina A V, Schleife A, Bechstedt F, Phillips M R 2013 Phys. Rev. B 88 235210
[21] [22] [23] Han X, Kou L, Zhang Z, Zhang Z, Zhu X, Xu J, Liao Z, Guo W, Yu D 2012 Adv. Mater 24 4707
[24] Grundmann M, Dietrich C P 2012 Phys. Status. Solidi. B 249 871
[25] [26] Dietrich C, Lange M, Klupfel F, Von Wenckstern H, Schmidt-Grund R, Grundmann M 2011 Appl. Phys. Lett. 98 031105
[27] [28] Xu C, Sun X W, Dong Z L, Yu M 2004 Appl. Phys. Lett. 85 3878
[29] [30] [31] Xu X, Lau S, Chen J, Chen G, Tay B 2001 J. Cryst. Growth 223 201
[32] [33] Korsunska N, Borkovska L, Bulakh B, Khomenkova L Y, Kushnirenko V, Markevich I 2003 J. Lumin. 102 733
[34] [35] Mang A, Reimann K, Rbenacke S 1995 Solid State Commun 94 251
[36] [37] Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M, Dogan S, Avrutin V, Cho S-J, Morkoc H 2005 J. Appl. Phys 98 041301
[38] Xu X, Brossard F S F, Williams D A, Collins D P, Holmes M J, Taylor R A, Zhang X 2009 Appl. Phys. Lett. 94
[39] [40] Xu X, Brossard F S F, Williams D A, Collins D P, Holmes M J, Taylor R A, Zhang X 2010 New J. Phys 12 083052
[41] [42] Nobis T, Kaidashev E M, Rahm A, Lorenz M, Grundmann M 2004 Phys. Rev. Lett. 93 103903
[43] [44] Liao Z M, Wu H C, Fu Q, Fu X W, Zhu X L, Xu J, Shvets I V, Zhang Z H, Guo W L, Leprince Wang Y, Wu X S, Yu D P 2012 Sci. Rep. 2 452
[45] [46] [47] Vedam K, Davis T 1969 Phys. Rev. 181 1196
[48] [49] Lagois J 1981 Phys. Rev. B 23 5511
计量
- 文章访问数: 7168
- PDF下载量: 691
- 被引次数: 0