-
A coupled quantum system composed of cavity field and atoms is one of the main research contents of cavity quantum electrodynamics. It can be used to realize single atom manipulation and measurement, and has important significance for studying the interaction between light and the atom, preparing quantum states and quantum entanglement. Current research work mainly focuses on two aspects. One is to achieve the atom trapping via the feedback control of the trapping laser intensity. The other is to measure the single atomic motion in a Fabry-Perot cavity by using Hermite-Gaussian transverse modes. The detection of the atomic trajectories has been realized via the observation of transmission spectra of the strong coupling system composed of cold atoms and Hermite-Gaussian transverse modes in a Fabry-Perot cavity. In order to observe the atomic motion trajectories in the cavity, we theoretically study the transmission spectrum of a strong coupling system composed of cold atoms and Laguerre-Gaussian transverse modes in a Fabry-Perot cavity in this paper. We calculate the relationship between the coupling coefficient and the mode number of Laguerre-Gaussian transverse modes. The result shows that with the increase of Laguerre-Gaussian transverse mode number, the maximum coupling coefficient between the atoms and cavity fields is almost unchanged, so the contrast of the detected spectrum is nearly independent of the mode number. Analysis shows that Laguerre-Gaussian transverse mode provides more abundant information about atomic motion trajectory than Hermite-Gaussian transverse mode. The field distribution of Laguerre-Gaussian transverse mode is ring-shaped. Owing to the ring shape, the atoms dropped at different positions experience different electric field intensities, and the detected transmission spectra are changed. Therefore, we can implement the high precision distinguishment of the atomic trajectories by observing the features of the transmission spectra such as the number of the transmission peaks and their positions. Furthermore, a small deviation of the atomic motion trajectories, on the edges of the rings of the electric field, may induce great change in transmission spectrum, and then we can very accurately detect the atomic motion around these positions.
-
Keywords:
- microcavity /
- Laguerre-Gaussian light /
- atomic trajectories
[1] McKeever J, Boca A, Boozer A D, Miller R, Buck J R, Kuzmich A, Kimble H J 2004 Science 303 1992
[2] Mcke M, Bochmann J, Hahn C, Neuzner A, Nlleke C, Reiserer A, Rempe G, Ritter S 2013 Phys. Rev. A 87 063805
[3] Kuhn A, Hennrich M, Rempe G 2002 Phys. Rev. Lett. 89 067901
[4] Kimble H J 2003 Phys. Rev. Lett. 90 249801
[5] Hijlkema M, Weber B, Specht H P, Webster S C, Kuhn A, Rempe G 2007 Nat. Phys. 3 253
[6] Kimble H J 2008 Nature 453 1023
[7] Wilk T, Webster S C, Kuhn A, Rempe G 2007 Science 317 488
[8] Ye J, Vernooy D W, Kimble H J 1999 Phys. Rev. Lett. 83 4987
[9] Miller R, Northup T E, Birnbaum K M, Boca A, Boozer A D, Kimble H J 2005 J. Phys. B: At. Mol. Opt. Phys. 38 S551
[10] Lynn T W, Birnbaum K, Kimble H J 2005 J. Opt. B 7 S215
[11] Fischer T, Maunz P, Pinkse P W H, Puppe T, Rempe G 2002 Phys. Rev. Lett. 88 163002
[12] Puppe T, Schuster T, Grothe A, Kubanek A, Murr K, Pinkse P W H, Rempe G 2007 Phys. Rev. Lett. 99 013002
[13] Kubanek A, Koch M, Sames C, Ourjoumtsev A, Pinkse P W H, Murr K, Rempe G 2009 Nature 462 898
[14] Kubanek A, Koch M, Sames C, Ourjoumtsev A, Wilk T, Pinkse P W H, Rempe G 2011 Appl. Phys. B 102 433
[15] Liu T, Zhang T C, Wang J M, Peng K C 2004 Acta Phys. Sin. 53 1346 (in Chinese) [刘涛, 张天才, 王军民, 彭堃墀 2004 53 1346]
[16] Liu L W, Tan L, Huang G 2011 Chin. Phys. B 20 014205
[17] Mabuchi H, Turchette Q A, Chapman M S, Kimble H J 1996 Opt. Lett. 21 1393
[18] Hood C J, Chapman M S, Lynn T W, Kimble H J 1998 Phys. Rev. Lett. 80 4157
[19] Kimble H J 1998 Phys. Scr. T76 127
[20] Puppe T, Maunz P, Fischer T, Pinkse P W H, Rempe G 2004 Phys. Scr. T112 7
[21] Zhang P F, Zhang Y C, Li G, Du J J, Zhang Y F, Guo Y Q, Wang J M, Zhang T C, Li W D 2011 Chin. Phys. Lett. 044203
[22] Zhang P F, Guo Y Q, Li Z H, Zhang Y C, Zhang Y F, Du J J, Li G, Wang J M, Zhang T C 2011 Phys. Rev. A 83 031804(R)
[23] Li W F, Du J J, Wen R J, Zhang P F, Li G, Zhang T C 2014 Acta Phys. Sin. 63 244205 (in Chinese) [李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才 2014 63 244205]
[24] Du J J, Li W F, Zhang P F, Li G, Wang J M, Zhang T C 2012 Front Phys. 7 435
[25] Du J J, Li W F, Wen R J, Li G, Zhang P F, Zhang T C 2013 Appl. Phys. Lett. 103 083117
[26] Du J J, Li W F, Wen R J, Li G, Zhang T C 2013 Acta Phys. Sin. 62 194203 (in Chinese) [杜金锦, 李文芳, 文瑞娟, 李刚, 张天才 2013 62 194203]
[27] Kotlyar V V, Khonina S N, Almazov A A, Soifer V A, Jefimovs K, Turunen J 2006 J. Opt. Soc. Am. A 23 43
-
[1] McKeever J, Boca A, Boozer A D, Miller R, Buck J R, Kuzmich A, Kimble H J 2004 Science 303 1992
[2] Mcke M, Bochmann J, Hahn C, Neuzner A, Nlleke C, Reiserer A, Rempe G, Ritter S 2013 Phys. Rev. A 87 063805
[3] Kuhn A, Hennrich M, Rempe G 2002 Phys. Rev. Lett. 89 067901
[4] Kimble H J 2003 Phys. Rev. Lett. 90 249801
[5] Hijlkema M, Weber B, Specht H P, Webster S C, Kuhn A, Rempe G 2007 Nat. Phys. 3 253
[6] Kimble H J 2008 Nature 453 1023
[7] Wilk T, Webster S C, Kuhn A, Rempe G 2007 Science 317 488
[8] Ye J, Vernooy D W, Kimble H J 1999 Phys. Rev. Lett. 83 4987
[9] Miller R, Northup T E, Birnbaum K M, Boca A, Boozer A D, Kimble H J 2005 J. Phys. B: At. Mol. Opt. Phys. 38 S551
[10] Lynn T W, Birnbaum K, Kimble H J 2005 J. Opt. B 7 S215
[11] Fischer T, Maunz P, Pinkse P W H, Puppe T, Rempe G 2002 Phys. Rev. Lett. 88 163002
[12] Puppe T, Schuster T, Grothe A, Kubanek A, Murr K, Pinkse P W H, Rempe G 2007 Phys. Rev. Lett. 99 013002
[13] Kubanek A, Koch M, Sames C, Ourjoumtsev A, Pinkse P W H, Murr K, Rempe G 2009 Nature 462 898
[14] Kubanek A, Koch M, Sames C, Ourjoumtsev A, Wilk T, Pinkse P W H, Rempe G 2011 Appl. Phys. B 102 433
[15] Liu T, Zhang T C, Wang J M, Peng K C 2004 Acta Phys. Sin. 53 1346 (in Chinese) [刘涛, 张天才, 王军民, 彭堃墀 2004 53 1346]
[16] Liu L W, Tan L, Huang G 2011 Chin. Phys. B 20 014205
[17] Mabuchi H, Turchette Q A, Chapman M S, Kimble H J 1996 Opt. Lett. 21 1393
[18] Hood C J, Chapman M S, Lynn T W, Kimble H J 1998 Phys. Rev. Lett. 80 4157
[19] Kimble H J 1998 Phys. Scr. T76 127
[20] Puppe T, Maunz P, Fischer T, Pinkse P W H, Rempe G 2004 Phys. Scr. T112 7
[21] Zhang P F, Zhang Y C, Li G, Du J J, Zhang Y F, Guo Y Q, Wang J M, Zhang T C, Li W D 2011 Chin. Phys. Lett. 044203
[22] Zhang P F, Guo Y Q, Li Z H, Zhang Y C, Zhang Y F, Du J J, Li G, Wang J M, Zhang T C 2011 Phys. Rev. A 83 031804(R)
[23] Li W F, Du J J, Wen R J, Zhang P F, Li G, Zhang T C 2014 Acta Phys. Sin. 63 244205 (in Chinese) [李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才 2014 63 244205]
[24] Du J J, Li W F, Zhang P F, Li G, Wang J M, Zhang T C 2012 Front Phys. 7 435
[25] Du J J, Li W F, Wen R J, Li G, Zhang P F, Zhang T C 2013 Appl. Phys. Lett. 103 083117
[26] Du J J, Li W F, Wen R J, Li G, Zhang T C 2013 Acta Phys. Sin. 62 194203 (in Chinese) [杜金锦, 李文芳, 文瑞娟, 李刚, 张天才 2013 62 194203]
[27] Kotlyar V V, Khonina S N, Almazov A A, Soifer V A, Jefimovs K, Turunen J 2006 J. Opt. Soc. Am. A 23 43
Catalog
Metrics
- Abstract views: 5800
- PDF Downloads: 135
- Cited By: 0