Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Selection of whispering-gallery modes and Fano resonance of prolate microbottle resonators

Wang Meng-Yu Meng Ling-Jun Yang Yu Zhong Hui-Kai Wu Tao Liu Bin Zhang Lei Fu Yan-Jun Wang Ke-Yi

Citation:

Selection of whispering-gallery modes and Fano resonance of prolate microbottle resonators

Wang Meng-Yu, Meng Ling-Jun, Yang Yu, Zhong Hui-Kai, Wu Tao, Liu Bin, Zhang Lei, Fu Yan-Jun, Wang Ke-Yi
PDF
HTML
Get Citation
  • Optical microresonators supporting whispering-gallery modes have been intensively studied in past decades due to their practical applications ranging from fundamental science to engineering physics. Among such microresonators, microsphere resonators have been demonstrated to possess ultra-high quality (Q) factor, however, their shapes usually become non-standard spherical body, leading to irregular resonant spectra. Microring resonators have unique potential in integraibility on chip, but the fabrication imperfection limits their Q-factor only to 106. In addition, the free spectral range (FSR) just depends on their radius. Due to the advantages of high Q-factor, standard shape, slender mode field distribution, the microbottle resonators are demonstrated to possess excellent performance in cavity quantum dynamics, nonlinear optics, high-sensitivity sensing, and micro-laser. In this paper, we carry out a systematic study on the spectral characteristics of prolate microbottle resonator theoretically and experimentally. First, theoretically, the field distribution theory of the microbottle resonator is studied in detail based on Helmholtz equation. Experimentally, prolate microbottle resonators are fabriated via arc discharge technology. Second, the radial modes and axial modes of the microbottles are efficiently excited with the help of a coupled tapered fiber waveguide. By adjusting the coupling gap between the microbottle and the waveguide, The controlling of three cupling states i.e. undercoupling, critical coupling and overcoupling are realized. In our experiment, the whispering-gallery modes excited are identifiable and recognizable. The resonant mode with an ultra-high Q-factor of up to 1.78 × 108 is achieved. The characteristic of ultra-high Q-factor makes the microbottle hold great potential in biochemical sensing, nonlinear optics, and micro-laser. The tuning stability is enhanced by keeping the waveguide in touch with the microbottle. We investigate the selective excitation of whispering-gallery modes by adjusting different coupling points. As a result, clean spectra with robust coupling are observed. The stable device is suitable for improving the sensing performance. Finally, Fano resonance effect is obtained by choosing the diameter of the tapered fiber waveguide. The results presented in this paper will be of great significance for enhancing the sensing, nonlinear optics and cavity quantum dynamics.
      Corresponding author: Wu Tao, wutccnu@nchu.edu.cn ; Wang Ke-Yi, kywang@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61775209, 41871229, 61275011) and the Key Research and Development Program of Jiangxi Province, China (Grant No. 20192BBH80019)
    [1]

    Vahala K J 2003 Nature 424 839Google Scholar

    [2]

    Wang P, Ding M, Murugan G S, Bo L, Guang C, Semenova Y, Wu Q, Farrell G, Brambilla G 2014 Opt. Lett. 39 5208Google Scholar

    [3]

    王涛, 杨旭, 刘晓斐, 雷府川, 高铭, 胡蕴琪, 龙桂鲁 2015 64 164212Google Scholar

    Wang T, Yang X, Liu X F, Lei F C, Gao M, Hu Y Q, Long G L 2015 Acta Phys. Sin. 64 164212Google Scholar

    [4]

    Wang M, Jin X, Li F, Cai B, Yang Y, Zeng S, Wang K 2019 Mater. Lett. 244 211Google Scholar

    [5]

    Lin G, Coikket A, Chembo Y K 2017 Adv. Opt. Photonics 9 828Google Scholar

    [6]

    Shen Z, Zhou Z, Zhou C, Sun F, Guo G, Dong C, Guo G 2015 Photonics Res. 3 243Google Scholar

    [7]

    Yang S, Wang Y, Sun H 2015 Adv. Opt. Mater. 3 1136Google Scholar

    [8]

    Bogaerts W, Heyn P D, Vaerenbergh T V, et al. 2012 Laser Photonics Rev. 6 47

    [9]

    Wang T, He J, Lee C, Niu H 2012 Opt. Express 20 28119Google Scholar

    [10]

    Gu G, Chen L, Fu H, Che K, Cai Z, Xu H 2013 Chin. Opt. Lett. 11 101401Google Scholar

    [11]

    Sumetsky M 2004 Opt. Lett. 29 8Google Scholar

    [12]

    Louyer Y, Meschede D, Rauschenbeutel A 2005 Phys. Rev. A 72 031801Google Scholar

    [13]

    Sumetsky M 2019 Prog. Quantum Electron. 64 1Google Scholar

    [14]

    Pöllinger M, O'Shea D, Warken F, Rauschenbeutel A 2009 Phys. Rev. Lett. 103 053901Google Scholar

    [15]

    Murugan G S, Wilkinson J S, Zervas M N 2009 Opt. Express 17 11816

    [16]

    Murugan G S, Wilkinson J S, Zervas M N 2010 Opt. Lett. 35 1893Google Scholar

    [17]

    Sumetsky M 2013 Phys. Rev. Lett. 111 163901Google Scholar

    [18]

    Dong Y, Jin X, Wang K 2015 App. Opt. 54 4016Google Scholar

    [19]

    Gu F, Xie F, Lin X, Linghu S, Fang W, Zeng H, Tong L, Zhuang S 2017 Light Sci. Appl. 6 e17061Google Scholar

    [20]

    Lu Q, Chen X, Xie S, Wu X 2018 Opt. Express 26 20183Google Scholar

    [21]

    Yin Y, Niu Y, Ren M, Wu W, Zhao W, Nan J, Zheng Z, Zhang Y, Ding M 2018 Opt. Lett. 19 4715

    [22]

    Stoian R, Kavine B K, Rosenberger A T 2019 Talanta 194 585Google Scholar

    [23]

    Asano M, Takeuchi Y, Ozdemir S K, Rikizo I, Yang L, Imoto N, Yamamoto T 2016 Opt. Express 24 12082Google Scholar

    [24]

    Chen Y, Zhou Z, Zou C, Shen Z, Guo G, Dong C 2017 Opt. Express 25 16879Google Scholar

    [25]

    Yong Y, Ooka Y, Thompson R, Ward J, Chormaic S N 2018 Opt. Lett. 41 575

    [26]

    Dong Y, Jin X, Wang K 2016 Opt. Commun. 372 106Google Scholar

    [27]

    杨睿, 於文华, 鲍洋, 张远宪, 普小云 2008 57 6412Google Scholar

    Yang R, Yu W H, Bao Y, Zhang Y X, Pu X Y 2008 Acta Phys. Sin. 57 6412Google Scholar

    [28]

    Zhang K, Wang Y, Wu Y 2017 Opt. Lett. 42 2956Google Scholar

    [29]

    Wang M, Zeng S, Meng L, Yang Y, Jin X, Dong Y, Zhang L, Xu W, Wang K 2019 IEEE Photonics J. 11 7105412Google Scholar

    [30]

    Liao J, Wu X, Liu L, Xu L 2016 Opt. Express 24 8574Google Scholar

    [31]

    Zhang Z, Ng G I, Hu T, Qiu H, Guo X, Wang W, Rouifed M S, Liu C, Wang H 2017 Appl. Phys. Lett. 11 081105

    [32]

    Chiba A, Fujiwara K, Hanamura R, Matsumoto T 2005 Appl. Phys. Lett. 86 261106Google Scholar

    [33]

    Li B, Xiao Y, Zou C, Jiang X, Liu Y, Sun F, Li Y, Gong Q 2012 Appl. Phys. Lett. 100 021108Google Scholar

  • 图 1  扁长型微瓶腔制备过程图 (a) 对单根光纤放电; (b) 微球腔形成; (c) 第二根光纤对齐; (d) 微瓶腔形成

    Figure 1.  The fabrication process of prolate microbottle resonator: (a) The single fiber is heated via electrical arc discharge; (b) the microsphere is formed; (c) another fiber is placed to align the microsphere; (d) the microbottle resonator is formed.

    图 2  微瓶腔几何形状示意图及其基本参数

    Figure 2.  Geometrical schematic and basic parameters of the microbottle resonator.

    图 3  (a)几何轮廓拟合结果; (b)轴向模式(m = 420, p = 1, q = 4)场分布图

    Figure 3.  (a) Fitted result of geometric outline; (b) axial mode field distributions (m = 420, p = 1, q = 4).

    图 4  (a) 相同轴向谐振模式下对应的角向FSR以及相同角向谐振模式下对应的轴向FSR; (b) z方向上前三阶(q = 0, q = 1, q = 2)轴向模式场分布图

    Figure 4.  (a) Angular free spectral range (FSR) with the same axial resonant mode and axial FSR with the same angular FSR; (b) the first three order axial mode field distributions (q = 0, q = 1, q = 2).

    图 5  微瓶腔谐振光谱特性探测系统示意图, 插图为微瓶腔与光纤锥波导耦合系统的显微放大图

    Figure 5.  The detecting system diagram for the resonant spectra characteristic of the microbottle resonators; the illustration is the microscopy enlarged graph of the coupling system consisting of the microbottle resonator and the tapered fiber.

    图 6  粗扫状态下得到的谐振光谱, 图中标记了一阶径向模式下的角向和轴向谐振模式及对应的角向模式FSR和轴向模式FSR

    Figure 6.  The resonance spectra of the microbottle resonator for different coupling gaps in coarse scanning, the angular and axial resonant mode in the first order radial mode, angular FSR (FSRq,i) and axial FSR (FSRm,i) are marked in the figure.

    图 7  精扫状态下不同耦合间隙得到的谐振光谱 (a)实验操作示意图; (b)−(l)逐渐改变耦合间隙测得的谐振光谱图

    Figure 7.  The resonance spectra for different coupling gaps in fine scanning: (a) Schematic diagram of experimental operation; (b)−(l) the resonance spectra with the gradually changing gap.

    图 8  选择微瓶腔不同耦合点得到的谐振光谱 (a)实验操作示意图; (b)−(l)逐渐改变微瓶腔耦合点测得的谐振光谱图

    Figure 8.  The resonance spectra by choosing different coupling points of the microbottle resonator: (a) Schematic diagram of experimental operation; (b)−(l) the resonance spectra with the gradually changing coupling points of the microbottle.

    图 9  (a)−(d)选择不同光纤锥波导直径得到的谐振光谱, 图中标记了不对称的Fano谐振线型

    Figure 9.  (a)−(d) The resonance spectra by choosing different diameters of the tapered fiber waveguide, asymmetric Fano-like lineshapes are marked in the figure.

    表 1  实验测得的FSR值与理论计算得到的FSR值比较

    Table 1.  Comparison of FSR value of experimental data and theoretical data.

    实验数据FSR/nm理论数据FSR/nm误差%实验数据FSR/nm理论数据FSR/nm误差%
    FSRm,13.7183.6182.76FSRq,11.2321.2042.33
    FSRm,23.7083.6361.98FSRq,21.2411.2062.59
    FSRm,33.7163.6262.48FSRq,31.2391.2082.57
    FSRm,43.7323.6432.44FSRq,41.2381.2102.31
    FSRm,53.6363.6160.55FSRq,51.2371.2122.06
    FSRm,63.7183.6322.37FSRq,61.2391.2142.06
    DownLoad: CSV
    Baidu
  • [1]

    Vahala K J 2003 Nature 424 839Google Scholar

    [2]

    Wang P, Ding M, Murugan G S, Bo L, Guang C, Semenova Y, Wu Q, Farrell G, Brambilla G 2014 Opt. Lett. 39 5208Google Scholar

    [3]

    王涛, 杨旭, 刘晓斐, 雷府川, 高铭, 胡蕴琪, 龙桂鲁 2015 64 164212Google Scholar

    Wang T, Yang X, Liu X F, Lei F C, Gao M, Hu Y Q, Long G L 2015 Acta Phys. Sin. 64 164212Google Scholar

    [4]

    Wang M, Jin X, Li F, Cai B, Yang Y, Zeng S, Wang K 2019 Mater. Lett. 244 211Google Scholar

    [5]

    Lin G, Coikket A, Chembo Y K 2017 Adv. Opt. Photonics 9 828Google Scholar

    [6]

    Shen Z, Zhou Z, Zhou C, Sun F, Guo G, Dong C, Guo G 2015 Photonics Res. 3 243Google Scholar

    [7]

    Yang S, Wang Y, Sun H 2015 Adv. Opt. Mater. 3 1136Google Scholar

    [8]

    Bogaerts W, Heyn P D, Vaerenbergh T V, et al. 2012 Laser Photonics Rev. 6 47

    [9]

    Wang T, He J, Lee C, Niu H 2012 Opt. Express 20 28119Google Scholar

    [10]

    Gu G, Chen L, Fu H, Che K, Cai Z, Xu H 2013 Chin. Opt. Lett. 11 101401Google Scholar

    [11]

    Sumetsky M 2004 Opt. Lett. 29 8Google Scholar

    [12]

    Louyer Y, Meschede D, Rauschenbeutel A 2005 Phys. Rev. A 72 031801Google Scholar

    [13]

    Sumetsky M 2019 Prog. Quantum Electron. 64 1Google Scholar

    [14]

    Pöllinger M, O'Shea D, Warken F, Rauschenbeutel A 2009 Phys. Rev. Lett. 103 053901Google Scholar

    [15]

    Murugan G S, Wilkinson J S, Zervas M N 2009 Opt. Express 17 11816

    [16]

    Murugan G S, Wilkinson J S, Zervas M N 2010 Opt. Lett. 35 1893Google Scholar

    [17]

    Sumetsky M 2013 Phys. Rev. Lett. 111 163901Google Scholar

    [18]

    Dong Y, Jin X, Wang K 2015 App. Opt. 54 4016Google Scholar

    [19]

    Gu F, Xie F, Lin X, Linghu S, Fang W, Zeng H, Tong L, Zhuang S 2017 Light Sci. Appl. 6 e17061Google Scholar

    [20]

    Lu Q, Chen X, Xie S, Wu X 2018 Opt. Express 26 20183Google Scholar

    [21]

    Yin Y, Niu Y, Ren M, Wu W, Zhao W, Nan J, Zheng Z, Zhang Y, Ding M 2018 Opt. Lett. 19 4715

    [22]

    Stoian R, Kavine B K, Rosenberger A T 2019 Talanta 194 585Google Scholar

    [23]

    Asano M, Takeuchi Y, Ozdemir S K, Rikizo I, Yang L, Imoto N, Yamamoto T 2016 Opt. Express 24 12082Google Scholar

    [24]

    Chen Y, Zhou Z, Zou C, Shen Z, Guo G, Dong C 2017 Opt. Express 25 16879Google Scholar

    [25]

    Yong Y, Ooka Y, Thompson R, Ward J, Chormaic S N 2018 Opt. Lett. 41 575

    [26]

    Dong Y, Jin X, Wang K 2016 Opt. Commun. 372 106Google Scholar

    [27]

    杨睿, 於文华, 鲍洋, 张远宪, 普小云 2008 57 6412Google Scholar

    Yang R, Yu W H, Bao Y, Zhang Y X, Pu X Y 2008 Acta Phys. Sin. 57 6412Google Scholar

    [28]

    Zhang K, Wang Y, Wu Y 2017 Opt. Lett. 42 2956Google Scholar

    [29]

    Wang M, Zeng S, Meng L, Yang Y, Jin X, Dong Y, Zhang L, Xu W, Wang K 2019 IEEE Photonics J. 11 7105412Google Scholar

    [30]

    Liao J, Wu X, Liu L, Xu L 2016 Opt. Express 24 8574Google Scholar

    [31]

    Zhang Z, Ng G I, Hu T, Qiu H, Guo X, Wang W, Rouifed M S, Liu C, Wang H 2017 Appl. Phys. Lett. 11 081105

    [32]

    Chiba A, Fujiwara K, Hanamura R, Matsumoto T 2005 Appl. Phys. Lett. 86 261106Google Scholar

    [33]

    Li B, Xiao Y, Zou C, Jiang X, Liu Y, Sun F, Li Y, Gong Q 2012 Appl. Phys. Lett. 100 021108Google Scholar

  • [1] Guo Zhuang, Ouyang Feng, Lu Zhi-Zhou, Wang Meng-Yu, Tan Qing-Gui, Xie Cheng-Feng, Wei Bin, He Xing-Dao. Analysis and optimization of optical frequency comb spectra of magnesium fluoride microbottle resonator. Acta Physica Sinica, 2024, 73(3): 034202. doi: 10.7498/aps.73.20231126
    [2] Jin Xing, Xiao Shen-Yu, Gong Qi-Huang, Yang Qi-Fan. Generation, development, and application of microcombs. Acta Physica Sinica, 2023, 72(23): 234203. doi: 10.7498/aps.72.20231816
    [3] Fan Si-Chen, Yang Fan, Ruan Jun. Eelectromagnetic field distribution of whispering gallery mode in a sapphire resonator. Acta Physica Sinica, 2022, 71(23): 234101. doi: 10.7498/aps.71.20221156
    [4] Liu Jun-Jie, Sheng Quan, Wang Meng, Zhang Jun-Xiang, Geng Xing-Ning, Shi Zheng, Wang Ai-Hua, Shi Wei, Yao Jian-Quan. High-order Laguerre-Gaussian mode laser generated based on spherical aberration cavity. Acta Physica Sinica, 2022, 71(1): 014204. doi: 10.7498/aps.71.20211514
    [5] Yu Chang-Qiu, Ma Shi-Chang, Chen Zhi-Yuan, Xiang Chen-Chen, Li Hai, Zhou Tie-Jun. Magnetic field sensing performance of centimeter-scale resonator with optimized structure. Acta Physica Sinica, 2021, 70(16): 160701. doi: 10.7498/aps.70.20210247
    [6] Xu Xin, Jin Xue-Ying, Hu Xiao-Hong, Huang Xin-Ning. Spatiotemporal evolution and spectral character of second harmonic generation in optical microresonator. Acta Physica Sinica, 2020, 69(2): 024203. doi: 10.7498/aps.69.20191294
    [7] Xu Xin, Jin Xue-Ying, Gao Hao-Ran, Cheng Jie, Lu Yang, Chen Dong, Yu Lian-Dong. Analysis of frequency tuning process of dual coupled optical microcavities. Acta Physica Sinica, 2020, 69(18): 184207. doi: 10.7498/aps.69.20200530
    [8] Meng Ling-Jun, Wang Meng-Yu, Shen Yuan, Yang Yu, Xu Wen-Bin, Zhang Lei, Wang Ke-Yi. Triple-layer-coated microspheres for refractive index sensor with internally referenced self-compensated thermal effect. Acta Physica Sinica, 2020, 69(1): 014203. doi: 10.7498/aps.69.20191265
    [9] Gu Hong-Ming, Huang Yong-Qing, Wang Huan-Huan, Wu Gang, Duan Xiao-Feng, Liu Kai, Ren Xiao-Min. Theoretical analysis of new optical microcavity. Acta Physica Sinica, 2018, 67(14): 144201. doi: 10.7498/aps.67.20180067
    [10] Qiu Kang-Sheng, Zhao Yan-Hui, Liu Xiang-Bo, Feng Bao-Hua, Xu Xiu-Lai. Whispering gallery modes in a bent ZnO microwire. Acta Physica Sinica, 2014, 63(17): 177802. doi: 10.7498/aps.63.177802
    [11] Shu Fang-Jie. Analysis of features of the microdisk cavity perpendicular coupler. Acta Physica Sinica, 2013, 62(6): 064212. doi: 10.7498/aps.62.064212
    [12] Li Xiao-Ze, Teng Yan, Wang Jian-Guo, Song Zhi-Min, Zhang Li-Jun, Zhang Yu-Chuan, Ye Hu. Mode selection in surface wave oscillator with overmoded structure. Acta Physica Sinica, 2013, 62(8): 084103. doi: 10.7498/aps.62.084103
    [13] Zhu Kun, Zhou Li, You Hong-Hai, Jiang Nan, Pu Xiao-Yun. The study on the produced length of whispering-gallery-mode fiber laser. Acta Physica Sinica, 2011, 60(5): 054205. doi: 10.7498/aps.60.054205
    [14] Cheng Zheng-Fu, Long Xiao-Xia, Zheng Rui-Lun. Influence of temperature on the Bose condensation of photons and excitons in optic microcavity. Acta Physica Sinica, 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [15] Zhang Yuan-Xian, Feng Yong-Li, Zhou Li, Pu Xiao-Yun. Radiation properties of a whispering-gallery-mode fibre laser based on skew light pumping. Acta Physica Sinica, 2010, 59(3): 1802-1808. doi: 10.7498/aps.59.1802
    [16] Zhang Yuan-Xian, Pu Xiao-Yun, Zhu Kun, Han De-Yu, Jiang Nan. Threshold characteristics of evanescent-wave pumped whispering-gallery-mode fiber laser. Acta Physica Sinica, 2009, 58(5): 3179-3184. doi: 10.7498/aps.58.3179
    [17] Pu Xiao-Yun, Bai Ran, Xiang Wen-Li, Du Fei, Jiang Nan. Two-wavelength-range whispering-gallery-mode fiber laser pumped by evanescent wave. Acta Physica Sinica, 2009, 58(6): 3923-3928. doi: 10.7498/aps.58.3923
    [18] Yang Rui, Yu Wen-Hua, Bao Yang, Zhang Yuan-Xian, Pu Xiao-Yun. Whispering-gallery modes based on evanescent field in cylindrical micro-cavity. Acta Physica Sinica, 2008, 57(10): 6412-6418. doi: 10.7498/aps.57.6412
    [19] Liu Jin-Song, Liu Hai, Wang Chun, Lü Jian-Tao, Fan Ting, Wang Xiao-Dong. Threshold and saturation properties of two-dimensional random lasers and mode selection. Acta Physica Sinica, 2006, 55(8): 4123-4131. doi: 10.7498/aps.55.4123
    [20] Liu Tao, Zhang Tian-Cai, Wang Jun-Min, Peng Kun-Chi. Optical dipole trap in a high-finesse micro-cavity. Acta Physica Sinica, 2004, 53(5): 1346-1351. doi: 10.7498/aps.53.1346
Metrics
  • Abstract views:  7285
  • PDF Downloads:  196
  • Cited By: 0
Publishing process
  • Received Date:  31 May 2020
  • Accepted Date:  14 July 2020
  • Available Online:  27 November 2020
  • Published Online:  05 December 2020

/

返回文章
返回
Baidu
map