搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

品质因数对TM02模相对论返波管工作模式影响

李雨晴 王洪广 翟永贵 杨文晋 王玥 李韵 李永东

引用本文:
Citation:

品质因数对TM02模相对论返波管工作模式影响

李雨晴, 王洪广, 翟永贵, 杨文晋, 王玥, 李韵, 李永东

Influence of quality factor on operating mode of TM02 mode relativistic backwave oscillator

Li Yu-Qing, Wang Hong-Guang, Zhai Yong-Gui, Yang Wen-Jin, Wang Yue, Li Yun, Li Yong-Dong
PDF
HTML
导出引用
  • 结合理论分析和数值模拟, 研究了TM02模过模结构相对论返波管的模式竞争机制. 理论推导得到波纹波导中混合模式与圆波导中对应模式的近似关系, 以近似模式作为波导输入来计算包含的高频结构S11参数曲线, 分析各模式的品质因数. 三维粒子模拟结果显示, 当TM02模式的耦合阻抗优势明显时, 束波作用点基本不受两端反射影响, 输出的其他模式微波主要是由互作用模式转换而来; 当耦合阻抗优势不明显时, 品质因数的改变会影响束波相互作用, 起振模式随之变化. 各模式群速度接近时, 谐振对工作模式的影响的实质是末端反射主导下的品质因数对模式的影响. 品质因数和耦合阻抗对返波管工作模式的共同作用为在输出模式稳定的前提下优化输出功率、降低磁场提供了更大空间, 使用多目标优化设计算法对相对论返波管进行优化, 最终三维模拟得到的返波管输出功率达到534 MW, TM02模式输出功率占比94.95%.
    The mode competition in an overmoded relativistic backward wave oscillator is studied through theoretical analysis and three-dimensional particle-in-cell simulation in this work. Based on the quality factor and coupling impedance, the mode selection for a TM02 mode backward wave oscillator is achieved, and its output power and magnetic field strength are optimized in the simulation.The quality factor is related to the group velocity and end reflection of each mode. The dispersion curves of some non-axisymmetric modes are very close, and the group velocities are basically equal. Therefore, the end reflection needs considering to distinguish between the quality factors of different modes. In frequency domain simulation, analyzing the quality factor of each mode by using the S11 parameter curve can avoid calculating the end reflection.The three-dimensional simulation results show that the coupling impedance and quality factor jointly affect the operating mode. When the coupling impedance advantage of the working mode is not obvious, changing the resonant frequency of the high-frequency structure can affect the beam-wave interaction process, thereby changing the excitation mode. When the advantage is obvious, the beam-wave interaction of the excitation mode will not be destroyed by the resonant mode, and other modes of microwave output mainly come from the conversion of the same frequency modes. Due to the constant dispersion curve, the effect of resonance on the mode is essentially the effect of the quality factor on the mode dominated by the end reflection.The insensitive parameters and the electron beam radius obtained from the simulation are used as the optimal parameters, and the automatic optimization algorithm is used in combination with the two-dimensional simulation to perform multi-objective optimization design in the above device. The final output power of the backward wave oscillator reaches 534 MW, with an efficiency of 23.64%, an increase of 221.7% compared with the efficiency of the original device. The device operating mode remains stable, with a power ratio of TM02 mode reaching 94.95%.
      通信作者: 翟永贵, zhaiyg@xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12175176, 12235013)资助的课题.
      Corresponding author: Zhai Yong-Gui, zhaiyg@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175176, 12235013).
    [1]

    本福德, 斯威格, 谢米洛格鲁 著 (江伟华, 张驰 译) 2009 高功率微波 (北京: 国防工业出版社) 第1, 2页

    Benford J, Swegle J A, Schamiloglu E (translated by Jiang W H, Zhang C) 2009 High Power Microwave (Beijing: National Defence Industry Press) pp1, 2

    [2]

    Gold S H, Nusinovich G S 1997 Rev. Sci. Instrum. 68 3945Google Scholar

    [3]

    Gunin A V, Klimov A I, Korovin S D, Kurkan I K, Pegel I V, Polevin S D, Roitman A M, Rostov V V, Stepchenko A S, Totmeninov E M 1998 IEEE Trans. Plasma Sci. 26 326Google Scholar

    [4]

    Ye H, Chen C H, Hui N, Teng Y 2015 IEEE International Vacuum Electronics Conference (IVEC) Beijing, China April 27–29, 2015 p15412768

    [5]

    Xiao R Z, Shi Y C, Wang H D, Zhang G, Sun J 2020 Phys. Plasmas 27 043102Google Scholar

    [6]

    Teng Y, Cao Y B, Song Z M, Ye H, Shi Y C, Chen C H, Sun J 2014 Phys. Plasmas 21 123108Google Scholar

    [7]

    Teng Y, Wang D Y, Li S, Yang D W, Shi Y C, Wu P, Wu X 2019 Phys. Plasmas 26 053105Google Scholar

    [8]

    Vlasov A N, Shkvarunets A G, Rodgers J C, Carmel Y, Antonsen T M, Abuelfadl T M, Lingze D, Cherepenin V A, Nusinovich G S, Botton M 2000 IEEE Trans. Plasma Sci. 28 550Google Scholar

    [9]

    Zhang D, Zhang J, Zhong H H, Jin Z, Yuan Y 2014 Phys. Plasmas 21 491Google Scholar

    [10]

    刘国治, 陈昌华 2021 相对论返波管导论 (北京: 科学出版社) 第90页

    Liu G Z, Chen C H 2021 Introduction to Relativistic Backwave Oscillator (Beijing: Science Press) p90

    [11]

    张军, 钟辉煌 2005 54 206Google Scholar

    Zhang J, Zhong H H, 2005 Acta Phys. Sin. 54 206Google Scholar

    [12]

    Qiang L P, Teng Y, Zhang J W, Luo W, Li Y D, Wang Y, Wang H G 2022 IEEE Trans. Electron Devices 69 7025Google Scholar

    [13]

    李永东, 王洪广, 刘纯亮, 张殿辉, 王建国, 王玥 2009 强激光与粒子束 21 1866

    Li Y D, Wang H G, Liu C L, Zhang D H, Wang J G, Wang Y 2009 High Power Laser Part. Beams 21 1866

    [14]

    Wang J G, Chen Z G, Wang Y, Zhang D H, Liu C L, Li Y D, Wang H G, Qiao H L, Fu M Y, Yuan Y A 2010 Phys. Plasmas 17 073107Google Scholar

    [15]

    Fang A P, Liang S S, Li Y D, Wang H G, Wang Y 2020 Chin. Phys. B 29 100205Google Scholar

    [16]

    Yang W J, Li Y D, Wang H G, Jiang M, Cao M, Liu C L 2023 IEEE Trans. Electron Devices 70 3892Google Scholar

    [17]

    Le Chap T 1998 An Introduction to Genetic Algorithms (Cambridge: MIT Press

    [18]

    Chou S Y, Chang Y H, Shen C Y 2008 Eur. J. Operational Res. 189 132Google Scholar

    [19]

    Bugaev S P, Cherepenin V A 1990 IEEE Trans. Plasma Sci. 18 518Google Scholar

    [20]

    Swegle J A, Poukey J W, Leifeste G T 1985 Phys. Fluids 28 2882Google Scholar

    [21]

    金建铭 著 (尹家贺 译) 2017 高等电磁场理论 (北京: 电子工业出版社) 第183—186页

    Jin J M 2017 Theory and Computation of Electromagnetic Fields (2nd Ed.) (Beijing: Publishing House of Electronics Industry) pp183–186

  • 图 1  RBWO结构参数示意

    Fig. 1.  Structure of RBWO.

    图 2  慢波结构色散曲线

    Fig. 2.  Dispersion diagrams of SWS.

    图 3  色散曲线相近的各模式耦合阻抗

    Fig. 3.  Coupling impedance of modes with similar dispersion curves.

    图 4  谐振腔反射器对两种模式的反射系数

    Fig. 4.  Reflection coefficient of cavity for both modes.

    图 5  谐振腔反射器结构示意

    Fig. 5.  Structure of the resontants.

    图 6  不同结构输出功率随阴极位置变化

    Fig. 6.  Variation of output power of different structures with position of cathode.

    图 7  RBWO高频结构模型

    Fig. 7.  High frequency structure model of RBWO.

    图 8  RBWO三维结构

    Fig. 8.  Three-dimensional structure of the RBWO.

    图 9  RBWO的输出功率

    Fig. 9.  Output power of RBWO.

    图 10  电场幅值在x-y截面上的分布

    Fig. 10.  Distribution of electric fields in x-y section.

    图 11  高频结构中不同模式的S11参数

    Fig. 11.  S11 parameters for different modes in high frequency structure

    图 12  rb = 7.0 mm, L = 9 mm时的PIC模拟结果 (a) 电子相空间分布; (b) 输出频谱

    Fig. 12.  PIC simulation results when rb = 7.0 mm, L = 9 mm: (a) Electronic phase spatial distribution; (b) output spectrum.

    图 13  rb = 7.4 mm, L = 9 mm时的PIC模拟结果 (a) 电子相空间分布; (b) 输出频谱

    Fig. 13.  PIC simulation results when rb = 7.4 mm, L = 9 mm: (a) Electronic phase spatial distribution; (b) output spectrum.

    图 14  输出TM21模式时模拟结果 (a) S11参数; (b) 频谱; (c) 电场幅值

    Fig. 14.  Simulation results when TM21 mode is output: (a) S11 parameter; (b) spectrum; (c) electric field amplitude

    图 16  输出TM02模式时模拟结果 (a) S11参数; (b) 频谱; (c) 电场幅值

    Fig. 16.  Simulation results when TM02 mode is output: (a) S11 parameter; (b) spectrum; (c) electric field amplitude.

    图 15  输出TE41模式时模拟结果 (a) S11参数; (b) 频谱; (c) 电场幅值

    Fig. 15.  Simulation results when TE41 mode is output: (a) S11 parameter; (b) spectrum; (c) electric field amplitude.

    图 17  不同输出半径下模式纯度随漂移段长度的变化

    Fig. 17.  Variation of the mode purity with L under different rout.

    图 18  提取腔半径对输出功率和模式纯度的影响

    Fig. 18.  Effect of re on output power and model purity.

    图 19  输出功率

    Fig. 19.  Output power.

    图 21  电场幅值分布

    Fig. 21.  Electric field amplitude.

    表 1  谐振腔反射器参数

    Table 1.  Parameters of the resontants.

    序号Lr1/mmLr2/mmLb/mmrr1/mmrr2/mmra/mmrb/mmrc/mm
    13.06.02.011.014.09.29.210.8
    26.77.09.014.114.110.89.210.8
    下载: 导出CSV

    表 2  PIC模拟结果

    Table 2.  PIC simulation results.

    序号L/mmrb/mmTM02功率
    占比/%
    主要竞争模式
    及占比/%
    17.07.035.27TM0124.36
    27.57.042.09TE4127.92
    38.07.073.69TE0113.91
    48.57.033.24TE4130.12
    59.07.046.75TE4132.53
    610.07.053.70TM0119.66
    711.07.054.95TM0122.72
    下载: 导出CSV

    表 3  L = 9 mm时不同模式功率占比与品质因数

    Table 3.  Power ratio and Q of different modes when L = 9 mm.

    模式
    TM02 TE41 TM01 TE01 其他
    功率占比/% 46.75 32.53 19.09 1.52 0.01
    谐振频率 f/GHz 26.00 25.98 26.09 25.95
    Q 23.32 6493.75 783.48 462.57
    下载: 导出CSV

    表 4  不同模式的工作参数

    Table 4.  Operating parameters.

    模式
    TM02TE41TM21
    工作频率/GHz26.0225.8324.57
    谐振频率f/GHz26.0025.9724.38
    rout/mm10.810.610.7
    L/mm9.011.07.0
    Q3610.83935.62890.6
    下载: 导出CSV

    表 5  参数变化范围及精度

    Table 5.  Parameter variation range and precision.

    参数初始值变化范围精度
    L/mm7.0[5.0, 11.0]0.1
    re/mm16.5[14.0, 20.0]0.1
    rb/mm7.0[6.4, 7.6]0.1
    LB/mm125.0[100.0, 160.0]0.1
    B/T2.8[0.4, 3.0]0.01
    下载: 导出CSV

    表 6  各参数优化结果

    Table 6.  Optimization results of each parameter.

    参数L/mmre/mmrb/mmLB/mmB/T
    优化结果6.515.57.2118.11.42
    下载: 导出CSV
    Baidu
  • [1]

    本福德, 斯威格, 谢米洛格鲁 著 (江伟华, 张驰 译) 2009 高功率微波 (北京: 国防工业出版社) 第1, 2页

    Benford J, Swegle J A, Schamiloglu E (translated by Jiang W H, Zhang C) 2009 High Power Microwave (Beijing: National Defence Industry Press) pp1, 2

    [2]

    Gold S H, Nusinovich G S 1997 Rev. Sci. Instrum. 68 3945Google Scholar

    [3]

    Gunin A V, Klimov A I, Korovin S D, Kurkan I K, Pegel I V, Polevin S D, Roitman A M, Rostov V V, Stepchenko A S, Totmeninov E M 1998 IEEE Trans. Plasma Sci. 26 326Google Scholar

    [4]

    Ye H, Chen C H, Hui N, Teng Y 2015 IEEE International Vacuum Electronics Conference (IVEC) Beijing, China April 27–29, 2015 p15412768

    [5]

    Xiao R Z, Shi Y C, Wang H D, Zhang G, Sun J 2020 Phys. Plasmas 27 043102Google Scholar

    [6]

    Teng Y, Cao Y B, Song Z M, Ye H, Shi Y C, Chen C H, Sun J 2014 Phys. Plasmas 21 123108Google Scholar

    [7]

    Teng Y, Wang D Y, Li S, Yang D W, Shi Y C, Wu P, Wu X 2019 Phys. Plasmas 26 053105Google Scholar

    [8]

    Vlasov A N, Shkvarunets A G, Rodgers J C, Carmel Y, Antonsen T M, Abuelfadl T M, Lingze D, Cherepenin V A, Nusinovich G S, Botton M 2000 IEEE Trans. Plasma Sci. 28 550Google Scholar

    [9]

    Zhang D, Zhang J, Zhong H H, Jin Z, Yuan Y 2014 Phys. Plasmas 21 491Google Scholar

    [10]

    刘国治, 陈昌华 2021 相对论返波管导论 (北京: 科学出版社) 第90页

    Liu G Z, Chen C H 2021 Introduction to Relativistic Backwave Oscillator (Beijing: Science Press) p90

    [11]

    张军, 钟辉煌 2005 54 206Google Scholar

    Zhang J, Zhong H H, 2005 Acta Phys. Sin. 54 206Google Scholar

    [12]

    Qiang L P, Teng Y, Zhang J W, Luo W, Li Y D, Wang Y, Wang H G 2022 IEEE Trans. Electron Devices 69 7025Google Scholar

    [13]

    李永东, 王洪广, 刘纯亮, 张殿辉, 王建国, 王玥 2009 强激光与粒子束 21 1866

    Li Y D, Wang H G, Liu C L, Zhang D H, Wang J G, Wang Y 2009 High Power Laser Part. Beams 21 1866

    [14]

    Wang J G, Chen Z G, Wang Y, Zhang D H, Liu C L, Li Y D, Wang H G, Qiao H L, Fu M Y, Yuan Y A 2010 Phys. Plasmas 17 073107Google Scholar

    [15]

    Fang A P, Liang S S, Li Y D, Wang H G, Wang Y 2020 Chin. Phys. B 29 100205Google Scholar

    [16]

    Yang W J, Li Y D, Wang H G, Jiang M, Cao M, Liu C L 2023 IEEE Trans. Electron Devices 70 3892Google Scholar

    [17]

    Le Chap T 1998 An Introduction to Genetic Algorithms (Cambridge: MIT Press

    [18]

    Chou S Y, Chang Y H, Shen C Y 2008 Eur. J. Operational Res. 189 132Google Scholar

    [19]

    Bugaev S P, Cherepenin V A 1990 IEEE Trans. Plasma Sci. 18 518Google Scholar

    [20]

    Swegle J A, Poukey J W, Leifeste G T 1985 Phys. Fluids 28 2882Google Scholar

    [21]

    金建铭 著 (尹家贺 译) 2017 高等电磁场理论 (北京: 电子工业出版社) 第183—186页

    Jin J M 2017 Theory and Computation of Electromagnetic Fields (2nd Ed.) (Beijing: Publishing House of Electronics Industry) pp183–186

  • [1] 刘伟, 贾青, 郑坚. 弱相对论涡旋光在等离子体中传播的波前畸变及补偿.  , 2024, 73(5): 055203. doi: 10.7498/aps.73.20231635
    [2] 杨温渊, 董烨, 孙会芳, 杨郁林, 董志伟. 超宽带等离子体相对论微波噪声放大器的物理分析和数值模拟.  , 2023, 72(5): 058401. doi: 10.7498/aps.72.20222061
    [3] 汪耀庭, 罗岚月, 李和平, 姜东君, 周明胜. 外加电场作用下的壁面约束衰亡等离子体中带电粒子非平衡输运特性.  , 2022, 71(23): 232801. doi: 10.7498/aps.71.20221431
    [4] 杨德文, 陈昌华, 史彦超, 肖仁珍, 滕雁, 范志强, 刘文元, 宋志敏, 孙钧. X波段高效率速调型相对论返波管研究.  , 2020, 69(16): 164102. doi: 10.7498/aps.69.20200434
    [5] 杨温渊, 董烨, 孙会芳, 董志伟. 磁绝缘线振荡器中模式竞争的物理分析和数值模拟.  , 2020, 69(19): 198401. doi: 10.7498/aps.69.20200383
    [6] 王洪广, 柳鹏飞, 张建威, 李永东, 曹亦兵, 孙钧. 收集极释气对相对论返波管影响的粒子模拟.  , 2019, 68(18): 185203. doi: 10.7498/aps.68.20190554
    [7] 黄丽萍, 洪斌斌, 刘畅, 唐昌建. 220GHz三次谐波光子带隙谐振腔回旋管振荡器的研究.  , 2014, 63(11): 118401. doi: 10.7498/aps.63.118401
    [8] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真.  , 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [9] 陈再高, 王建国, 王玥, 朱湘琴, 张殿辉, 乔海亮. 相对论返波管超辐射产生与辐射的数值模拟研究.  , 2014, 63(3): 038402. doi: 10.7498/aps.63.038402
    [10] 陈再高, 王建国, 王玥, 乔海亮, 郭伟杰, 张殿辉. 基于粒子模拟和并行遗传算法的高功率微波源优化设计.  , 2013, 62(16): 168402. doi: 10.7498/aps.62.168402
    [11] 王辉辉, 刘大刚, 蒙林, 刘腊群, 杨超, 彭凯, 夏蒙重. 气体电离的全三维电磁粒子模拟/蒙特卡罗数值研究.  , 2013, 62(1): 015207. doi: 10.7498/aps.62.015207
    [12] 王辉辉, 蒙林, 刘大刚, 刘腊群, 杨超. 基于相对论返波管的全三维PIC/PSO数值优化研究.  , 2013, 62(13): 138401. doi: 10.7498/aps.62.138401
    [13] 王宇, 陈再高, 雷奕安. 等离子体填充0.14 THz相对论返波管模拟.  , 2013, 62(12): 125204. doi: 10.7498/aps.62.125204
    [14] 杜朝海, 李铮迪, 薛志浩, 刘濮鲲, 薛谦忠, 张世昌, 徐寿喜, 耿志辉, 顾伟, 粟亦农, 刘高峰. W波段损耗介质加载回旋返波振荡器中模式竞争的研究.  , 2012, 61(7): 070703. doi: 10.7498/aps.61.070703
    [15] 李伟, 刘永贵. 2工作模式下可调谐同轴辐射相对论磁控管的模拟研究.  , 2011, 60(12): 128403. doi: 10.7498/aps.60.128403
    [16] 刘漾, 巩华荣, 魏彦玉, 宫玉彬, 王文祥, 廖复疆. 有效抑制光子晶体加载矩形谐振腔中模式竞争的方法.  , 2009, 58(11): 7845-7851. doi: 10.7498/aps.58.7845
    [17] 李小泽, 王建国, 童长江, 张 海. 充填不同气体相对论返波管特性的PIC-MCC模拟.  , 2008, 57(7): 4613-4622. doi: 10.7498/aps.57.4613
    [18] 梁慧敏, 杜惊雷, 王宏波, 王治华, 罗时荣, 杨经国, 郑万国, 魏晓峰, 朱启华, 黄晓军, 王晓东, 郭 仪. 不同波长激光激发下C6H12受激拉曼散射模式竞争.  , 2007, 56(12): 6994-6998. doi: 10.7498/aps.56.6994
    [19] 徐 慧, 盛政明, 张 杰. 相对论效应对激光在等离子体中的共振吸收的影响.  , 2006, 55(10): 5354-5361. doi: 10.7498/aps.55.5354
    [20] 宫玉彬, 张 章, 魏彦玉, 孟凡宝, 范植开, 王文祥. 高功率微波器件中脉冲缩短现象的粒子模拟.  , 2004, 53(11): 3990-3995. doi: 10.7498/aps.53.3990
计量
  • 文章访问数:  2243
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-27
  • 修回日期:  2023-10-20
  • 上网日期:  2023-11-02
  • 刊出日期:  2024-02-05

/

返回文章
返回
Baidu
map