-
对于强耦合腔量子电动力学系统中以自由下落方式转移原子与腔模强耦合作用过程进行了实验研究, 并在理论上利用蒙特卡罗方法对整个实验过程进行了模拟. 根据模拟的高精度光学微腔实时记录的原子穿腔信号, 获得了原子与腔模相互作用以及冷原子的参数等基本信息, 包括不同初始条件下原子与腔模相互作用时腔的透射谱、单个原子在腔内的驻留时间、原子到达腔模时刻的概率分布以及原子到达腔模的动能分布等, 并作为对比给出了相应的实验结果. 基于模拟结果, 实验上建立了腔内光学偶极阱来俘获单个原子, 测量的单原子的腔内俘获寿命达到5 ms,比自由穿越时延长了约30倍. 该研究对于原子-腔受限空间内, 以自由下落方式转移原子以及原子与腔的耦合过程给出详细的分析, 有助于对类似实验结果的分析和系统参数的优化.The process of single-atom transfer in strongly coupled cavity quantum electrodynamics (QED) with free falling atoms is investigated by experiment and Monte Carlo simulation. We conduct the simulation of the whole physical process and give the corresponding experimental results. In experiment, a high finesse optical cavity is used for real-time detection of the single-atom transits from which the interaction information between single atoms and cavity can be extracted, including the transmission spectra of the cavity strongly coupled to single atoms, the interaction duration of the single atoms in the mode, the probability distribution of atom arrival time and the atomic kinetic energy distribution when arriving at the mode. All these can be completely derived from the transmission spectra of the different initial status. An intracavity far-off resonance trap (FORT) has been established and the single-atom trapping time inside the cavity is about 5 ms which is about 30 times longer than that without FORT. This study gives the detailed analysis of the whole procedure of free-falling atom transfer in cavity QED system and is helpful for optimizing the experimental parameters and design.
-
Keywords:
- microcavity /
- Monte Carlo simulation /
- statistic distribution /
- atom trapping
[1] Mabuchi H, Turchette Q A, Chapman M S, Kimble H J 1996 Opt. Lett. 21 1393
[2] Munstermann P, Fischer T, Pinkse P W H, Rempe G 1999 Opt. Commun. 159 63
[3] Zhang P F, Zhang Y C, Li G, Du J J, Zhang Y F, Guo Y Q, Wang J M, Zhang T C, Li W D 2011 Chin. Phys. Lett. 28 044203
[4] Hood C J, Lynn T W, Doherty A C, Parkins A S, Kimble H J 2000 Science 287 1447
[5] Pinkse P W H, Fischer T, Munstermann P, Rempe G 2000 Nature 404 365
[6] Puppe T, Pinkse P, Fischer T, Pinkse P W H, Rempe G 2004 Phys. Scr. T112 7
[7] Zhang P F, Guo Y Q, Li Z H, Zhang Y C, Zhang Y F, Du J J, Li G, Wang J M, Zhang T C 2011 Phys. Rev. A 83 031804
[8] Du J J, Li W F, Wen R J, Li G, Zhang P F, Zhang T C 2013 Appl. Phys. Lett. 102 173504
[9] Zhang P F, Guo Y Q, Li Z H, Zhang Y C, Zhang Y F, Du J J, Li G, Wang J M, Zhang T C 2011 J. Opt. Soc. Am. B 28 667
[10] Ottl A, Ritter S, Kohl M, Esslinger T 2005 Phys. Rev. Lett. 95 090404
[11] Köhl M, Öttl A, Ritter S, Donner T, Bourdel T, Esslinger T 2007 Appl. Phys. B 86 391
[12] Mcke M, Bochmann J, Hahn C, Neuzner A, Nölleke C, Reiserer A, Rempe G, Ritter S 2013 Phys. Rev. A 87 063805
[13] Hijlkema M, Weber B, Specht H P, Webster S C, Kuhn A, Rempe G 2007 Nat. Phys. 3 253
[14] Specht H P, Nölleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S, Rempe G 2011 Nature 473 190
[15] Ritter S, Nölleke C, Hahn C, Reiserer A, Neuzner A, Uphoff M, Mcke M, Figueroa E, Bochmann J, Rempe G 2012 Nature 484 195
[16] Kimble H J 2008 Nature 453 1023
[17] Sauer J A, Fortier K M, Chang M S, Hamley C D, Chapman M S 2004 Phys. Rev. A 69 051804
[18] Li W F, Du J J, Wen R J, Yang P F, Li G, Liang J J, Zhang T C 2014 Appl. Phys. Lett. 104 113102
[19] Du J J, Li W F, Wen R J, Li G, Zhang T C 2013 Acta Phys. Sin. 62 194203 (in Chinese) [杜金锦, 李文芳, 文瑞娟, 李刚, 张天才 2013 62 194203]
-
[1] Mabuchi H, Turchette Q A, Chapman M S, Kimble H J 1996 Opt. Lett. 21 1393
[2] Munstermann P, Fischer T, Pinkse P W H, Rempe G 1999 Opt. Commun. 159 63
[3] Zhang P F, Zhang Y C, Li G, Du J J, Zhang Y F, Guo Y Q, Wang J M, Zhang T C, Li W D 2011 Chin. Phys. Lett. 28 044203
[4] Hood C J, Lynn T W, Doherty A C, Parkins A S, Kimble H J 2000 Science 287 1447
[5] Pinkse P W H, Fischer T, Munstermann P, Rempe G 2000 Nature 404 365
[6] Puppe T, Pinkse P, Fischer T, Pinkse P W H, Rempe G 2004 Phys. Scr. T112 7
[7] Zhang P F, Guo Y Q, Li Z H, Zhang Y C, Zhang Y F, Du J J, Li G, Wang J M, Zhang T C 2011 Phys. Rev. A 83 031804
[8] Du J J, Li W F, Wen R J, Li G, Zhang P F, Zhang T C 2013 Appl. Phys. Lett. 102 173504
[9] Zhang P F, Guo Y Q, Li Z H, Zhang Y C, Zhang Y F, Du J J, Li G, Wang J M, Zhang T C 2011 J. Opt. Soc. Am. B 28 667
[10] Ottl A, Ritter S, Kohl M, Esslinger T 2005 Phys. Rev. Lett. 95 090404
[11] Köhl M, Öttl A, Ritter S, Donner T, Bourdel T, Esslinger T 2007 Appl. Phys. B 86 391
[12] Mcke M, Bochmann J, Hahn C, Neuzner A, Nölleke C, Reiserer A, Rempe G, Ritter S 2013 Phys. Rev. A 87 063805
[13] Hijlkema M, Weber B, Specht H P, Webster S C, Kuhn A, Rempe G 2007 Nat. Phys. 3 253
[14] Specht H P, Nölleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S, Rempe G 2011 Nature 473 190
[15] Ritter S, Nölleke C, Hahn C, Reiserer A, Neuzner A, Uphoff M, Mcke M, Figueroa E, Bochmann J, Rempe G 2012 Nature 484 195
[16] Kimble H J 2008 Nature 453 1023
[17] Sauer J A, Fortier K M, Chang M S, Hamley C D, Chapman M S 2004 Phys. Rev. A 69 051804
[18] Li W F, Du J J, Wen R J, Yang P F, Li G, Liang J J, Zhang T C 2014 Appl. Phys. Lett. 104 113102
[19] Du J J, Li W F, Wen R J, Li G, Zhang T C 2013 Acta Phys. Sin. 62 194203 (in Chinese) [杜金锦, 李文芳, 文瑞娟, 李刚, 张天才 2013 62 194203]
计量
- 文章访问数: 6946
- PDF下载量: 445
- 被引次数: 0