搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非晶态合金表面的水润湿动力学

孙川琴 黄海深 毕庆玲 吕勇军

引用本文:
Citation:

非晶态合金表面的水润湿动力学

孙川琴, 黄海深, 毕庆玲, 吕勇军

Wetting kinetics of water droplets on the metallic glass

Sun Chuan-Qin, Huang Hai-Shen, Bi Qing-Ling, Lü Yong-Jun
PDF
导出引用
  • 采用分子动力学模拟方法研究了改进的Simple pointcharge模型SPC/E水滴在Cu50Zr50非晶薄膜上的润湿行为和铺展过程.通过与CuZr(110)和(100)晶面对比研究发现,水滴在Cu50Zr50非晶薄膜表面上表现出较高的铺展速度.水滴在非晶合金表面的铺展过程中形成了明显的吸附层;而在晶态表面,水滴铺展前沿呈脚状形态.分析结果表明非晶表面的水分子在吸附层内呈现完全无序的单层排列方式,而在晶态表面,特别是(100)晶面,吸附层水分子呈双层有序排列.这种吸附层结构的差异导致了吸附层内水分子方向的差异:非晶表面吸附层内水分子方向倾向平行于表面,而晶态基底上吸附层内的水分子倾向于指向液滴内部.由此造成了非晶表面吸附层中的水分子与液滴内部以相对较弱的氢键相互作用,这使得上层水分子能够较容易扩散至吸附层前沿,促进液滴铺展.
    Water absorption and wetting at metal surface have received considerable attention due to the important role in many relevant areas including catalysis and corrosion. The glassy surface has unique physical and chemical properties, displaying promising applications in surface science and technology. However, the water wetting of metallic glass surface is less studied than that of crystal metal surface. In this paper, the wetting kinetics of water droplets at the surface of Cu50Zr50 glass is studied by using molecular dynamics simulations. The water droplets show a complete wetting behavior at the glassy surface as in the cases of the CuZr (110) and (110) crystal surfaces. However, the spreading rate of water droplets on the glassy surface is remarkably fast. Despite different spreading rates, the time dependence of the spreading radius for crystal and glass surfaces consistently follows a power law, Rn t with the same exponent n = 7, which conforms with the universal law of the water spreading at non-reactive solid surfaces. An advancing adsorption monolayer of water is formed at the glassy surface, whereas the front of spreading water droplets displays a foot-like morphology at each of the (110) and (110) surfaces. The spreading of water droplets can be described as the process that water molecules diffuse from the droplet surface to the front of the adsorption layer. To reveal the microscopic mechanism of the fast spreading at the glassy surface, the interactions between surface and water are analyzed. We find that the water molecules in the adsorption layer at the glassy surface display a disordered arrangement in contrast to those of the ordered and double-layer structure. The structure of adsorption layer is closely related to the orientations of water molecules in it. The water molecules in the adsorption layer at the glassy surface are mostly parallel to the surface, and those at the crystal surface tend to point to the interiors of droplets. The molecular orientation is proved to determine the relatively weak hydrogen-bond interactions between the adsorption layer and the droplet interior at the Cu50Zr50 glassy surface, thus facilitating the diffusion of water molecules from the droplet surface to the front of the adsorption layer and improving the spreading. On the contrary, the strong interactions associated with the crystal surfaces hinder the droplet from spreading by slowing down the molecular diffusion. The present work provides an insight into the microscopic mechanism of water spreading at metallic glassy surfaces and conduces to in depth understanding the physical and chemical processes associated with metallic-glass/water interfaces.
      通信作者: 吕勇军, yongjunlv@bit.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51171027)资助的课题.
      Corresponding author: Lü Yong-Jun, yongjunlv@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51171027).
    [1]

    Jin K, Loffler J F 2005 Appl. Phys. Lett. 86 241909

    [2]

    Zeng M Y, Holger M, Wu C X 2015 Chin. Phys. B 24 026101

    [3]

    Qiu C L, Chen Q, Liu L, Chan K C, Zhou J X, Chen P P, Zhang S M 2006 Scripta Mater. 55 605

    [4]

    Nagayama G, Cheng P 2004 Int. J. Heat. Mass. Transf. 47 501

    [5]

    Oak J J, Louzguine-Luzgin D V, Inoue A 2007 J. Mater. Res. 22 1346

    [6]

    Monfared A, Faghihi S, Karami H 2013 Int. J. Electrochem. Sci. 8 7744

    [7]

    Young T 1805 Phil. Trans. Roy. Soc. London 95 65

    [8]

    Swiler T P 2000 Acta Mater. 48 4775

    [9]

    Carrasco J, Hodgson A, Michaelides A 2012 Nat. Mater. 11 667

    [10]

    Hodgson A, Haq S 2009 Surf. Sci. Rep. 64 381

    [11]

    Carrasco J, Klimeš J, Michaelides A 2013 J. Chem. Phys. 138 024708

    [12]

    Saiz E, Tomsia A P 2004 Nat. Mater. 3 903

    [13]

    Yin L, Murray B T, Singler T J 2006 Acta Mater. 54 3561

    [14]

    de Gennes P G 1985 Rev. Mod. Phys. 57 827

    [15]

    Ambrose J C, Nicholas M G, Stoneham A M 1993 Acta Metall. Mater. 41 2395

    [16]

    Rieutord F, Rayssac O, Moriceau H 2000 Phys. Rev. E 62 6861

    [17]

    Qiu F, Wang M, Zhou H G, Zheng X, Lin X, Huang W D 2013 Acta Phys. Sin. 62 120203 (in Chinese) [邱丰,王猛,周化光,郑璇,林鑫,黄卫东 2013 62 120203]

    [18]

    Mortensen A, Drevet B, Eustathopoulos N 1997 Scripta Mater. 36 645

    [19]

    Voitovitch R, Mortensen A, Hodaj F, Eustathopoulos N 1999 Acta Mater. 47 1117

    [20]

    Xu Z, Gao Y, Wang C, Fang H 2015 J. Phys. Chem. C 119 20409

    [21]

    Limmer D T, Willard A P, Madden P, Chandler D 2013 Proc. Natl. Acad. Sci. USA 110 4200

    [22]

    Ma J, Zhang X Y, Wang D P, Zhao D Q, Ding D W, Liu K, Wang W H 2014 Appl. Phys. Lett. 104 173701

    [23]

    Li N, Xia T, Heng L, Liu L 2013 Appl. Phys. Lett. 102 251603

    [24]

    Wang Y B, Li H F, Zheng Y F, Wei S C, Li M 2010 Appl. Phys. Lett. 96 251909

    [25]

    Xia T, Li N, Wu Y, Liu L 2012 Appl. Phys. Lett. 101 081601

    [26]

    Berthier L, Ediger M D 2016 Phys. Today 69 41

    [27]

    Nose S 1984 Mol. Phys. 52 255

    [28]

    Verlet L 1968 Phys. Rev. 165 201

    [29]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [30]

    Berendsen H J C, Grigera J R, Straatsma T P 1987 J. Phys. Chem. 91 6269

    [31]

    Zhou X W, Johnson R A, Wadley H N G 2004 Phys. Rev. B 69 144113

    [32]

    Graves D B, Brault P 2009 J. Phys. D: Appl. Phys. 42 194011

    [33]

    Ghosh P, Colón Y J, Snurr R Q 2014 Chem. Commun. 50 11329

    [34]

    Heinz H, Vaia R A, Farmer B L, Naik R R 2008 J. Phys. Chem. C 112 17281

    [35]

    Cao C R, Lu Y M, Bai H Y, Wang W H 2015 Appl. Phys. Lett. 107 141606

  • [1]

    Jin K, Loffler J F 2005 Appl. Phys. Lett. 86 241909

    [2]

    Zeng M Y, Holger M, Wu C X 2015 Chin. Phys. B 24 026101

    [3]

    Qiu C L, Chen Q, Liu L, Chan K C, Zhou J X, Chen P P, Zhang S M 2006 Scripta Mater. 55 605

    [4]

    Nagayama G, Cheng P 2004 Int. J. Heat. Mass. Transf. 47 501

    [5]

    Oak J J, Louzguine-Luzgin D V, Inoue A 2007 J. Mater. Res. 22 1346

    [6]

    Monfared A, Faghihi S, Karami H 2013 Int. J. Electrochem. Sci. 8 7744

    [7]

    Young T 1805 Phil. Trans. Roy. Soc. London 95 65

    [8]

    Swiler T P 2000 Acta Mater. 48 4775

    [9]

    Carrasco J, Hodgson A, Michaelides A 2012 Nat. Mater. 11 667

    [10]

    Hodgson A, Haq S 2009 Surf. Sci. Rep. 64 381

    [11]

    Carrasco J, Klimeš J, Michaelides A 2013 J. Chem. Phys. 138 024708

    [12]

    Saiz E, Tomsia A P 2004 Nat. Mater. 3 903

    [13]

    Yin L, Murray B T, Singler T J 2006 Acta Mater. 54 3561

    [14]

    de Gennes P G 1985 Rev. Mod. Phys. 57 827

    [15]

    Ambrose J C, Nicholas M G, Stoneham A M 1993 Acta Metall. Mater. 41 2395

    [16]

    Rieutord F, Rayssac O, Moriceau H 2000 Phys. Rev. E 62 6861

    [17]

    Qiu F, Wang M, Zhou H G, Zheng X, Lin X, Huang W D 2013 Acta Phys. Sin. 62 120203 (in Chinese) [邱丰,王猛,周化光,郑璇,林鑫,黄卫东 2013 62 120203]

    [18]

    Mortensen A, Drevet B, Eustathopoulos N 1997 Scripta Mater. 36 645

    [19]

    Voitovitch R, Mortensen A, Hodaj F, Eustathopoulos N 1999 Acta Mater. 47 1117

    [20]

    Xu Z, Gao Y, Wang C, Fang H 2015 J. Phys. Chem. C 119 20409

    [21]

    Limmer D T, Willard A P, Madden P, Chandler D 2013 Proc. Natl. Acad. Sci. USA 110 4200

    [22]

    Ma J, Zhang X Y, Wang D P, Zhao D Q, Ding D W, Liu K, Wang W H 2014 Appl. Phys. Lett. 104 173701

    [23]

    Li N, Xia T, Heng L, Liu L 2013 Appl. Phys. Lett. 102 251603

    [24]

    Wang Y B, Li H F, Zheng Y F, Wei S C, Li M 2010 Appl. Phys. Lett. 96 251909

    [25]

    Xia T, Li N, Wu Y, Liu L 2012 Appl. Phys. Lett. 101 081601

    [26]

    Berthier L, Ediger M D 2016 Phys. Today 69 41

    [27]

    Nose S 1984 Mol. Phys. 52 255

    [28]

    Verlet L 1968 Phys. Rev. 165 201

    [29]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [30]

    Berendsen H J C, Grigera J R, Straatsma T P 1987 J. Phys. Chem. 91 6269

    [31]

    Zhou X W, Johnson R A, Wadley H N G 2004 Phys. Rev. B 69 144113

    [32]

    Graves D B, Brault P 2009 J. Phys. D: Appl. Phys. 42 194011

    [33]

    Ghosh P, Colón Y J, Snurr R Q 2014 Chem. Commun. 50 11329

    [34]

    Heinz H, Vaia R A, Farmer B L, Naik R R 2008 J. Phys. Chem. C 112 17281

    [35]

    Cao C R, Lu Y M, Bai H Y, Wang W H 2015 Appl. Phys. Lett. 107 141606

  • [1] 张剑, 郝奇, 张浪渟, 乔吉超. 不同力学激励形式探索La基非晶合金微观结构非均匀性.  , 2024, 73(4): 046101. doi: 10.7498/aps.73.20231421
    [2] 徐山森, 常健, 翟斌, 朱先念, 魏炳波. 液态五元Zr57Cu20Al10Ni8Ti5合金的微观结构演变与非晶形成机制.  , 2023, 72(22): 226401. doi: 10.7498/aps.72.20231169
    [3] 安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋. 尺寸依赖的CoCrFeNiMn晶体/非晶双相高熵合金塑性变形机制的分子动力学模拟.  , 2022, 71(24): 243101. doi: 10.7498/aps.71.20221368
    [4] 张博佳, 安敏荣, 胡腾, 韩腊. 镁中位错和非晶作用机制的分子动力学模拟.  , 2022, 71(14): 143101. doi: 10.7498/aps.71.20212318
    [5] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟.  , 2021, 70(18): 186201. doi: 10.7498/aps.70.20210324
    [6] 韦昭召, 马骁, 柯常波, 张新平. Fe合金FCC-BCC原子尺度台阶型马氏体相界面迁移行为的分子动力学模拟研究.  , 2020, 69(13): 136102. doi: 10.7498/aps.69.20191903
    [7] 武振伟, 汪卫华. 非晶态物质原子局域连接度与弛豫动力学.  , 2020, 69(6): 066101. doi: 10.7498/aps.69.20191870
    [8] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响.  , 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [9] 裴传康, 魏炳乾. 微小水滴撞击深水液池空腔运动的数值模拟及机理研究.  , 2018, 67(22): 224703. doi: 10.7498/aps.67.20181422
    [10] 董琪琪, 胡海豹, 陈少强, 何强, 鲍路瑶. 水滴撞击结冰过程的分子动力学模拟.  , 2018, 67(5): 054702. doi: 10.7498/aps.67.20172174
    [11] 齐玉, 曲昌荣, 王丽, 方腾. Fe50Cu50合金熔体相分离过程的分子动力学模拟.  , 2014, 63(4): 046401. doi: 10.7498/aps.63.46401
    [12] 郑小青, 杨洋, 孙得彦. 模型二元有序合金固液界面结构的分子动力学研究.  , 2013, 62(1): 017101. doi: 10.7498/aps.62.017101
    [13] 董垒, 王卫国. 纯铜[0 1 1]倾侧型非共格3晶界结构稳定性分子动力学模拟研究.  , 2013, 62(15): 156102. doi: 10.7498/aps.62.156102
    [14] 陈青, 孙民华. 分子动力学模拟尺寸对纳米Cu颗粒等温晶化过程的影响.  , 2013, 62(3): 036101. doi: 10.7498/aps.62.036101
    [15] 陈青, 王淑英, 孙民华. 纳米Cu颗粒等温晶化过程的分子动力学模拟研究.  , 2012, 61(14): 146101. doi: 10.7498/aps.61.146101
    [16] 谢红献, 于涛, 刘波. 温度对镍基单晶高温合金γ/γ'相界面上错配位错运动影响的分子动力学研究.  , 2011, 60(4): 046104. doi: 10.7498/aps.60.046104
    [17] 王海龙, 王秀喜, 王 宇, 梁海弋. 非晶Ti3Al合金的变形晶化机理的原子模拟.  , 2007, 56(3): 1489-1493. doi: 10.7498/aps.56.1489
    [18] 赵九洲, 刘 俊, 赵 毅, 胡壮麒. 压力对非晶铜形成影响的分子动力学模拟.  , 2007, 56(1): 443-445. doi: 10.7498/aps.56.443
    [19] 杨 弘, 陈 民. 深过冷液态Ni2TiAl合金热物理性质的分子动力学模拟.  , 2006, 55(5): 2418-2421. doi: 10.7498/aps.55.2418
    [20] 文玉华, 朱 弢, 曹立霞, 王崇愚. 镍基单晶超合金Ni/Ni3Al晶界的分子动力学模拟.  , 2003, 52(10): 2520-2524. doi: 10.7498/aps.52.2520
计量
  • 文章访问数:  7190
  • PDF下载量:  829
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-15
  • 修回日期:  2017-06-15
  • 刊出日期:  2017-09-05

/

返回文章
返回
Baidu
map