Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Evolution characteristic analysis of double-helical vortex wake of high Reynolds number flow

Li Gao-Hua Wang Fu-Xin

Citation:

Evolution characteristic analysis of double-helical vortex wake of high Reynolds number flow

Li Gao-Hua, Wang Fu-Xin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • High Reynolds number helical vortex system possesses a dominant characteristic of helicopter rotor flow field, whose spatiotemporal evolution is one of the most important factors affecting the aerodynamic performance. In such a type of flow field, vortex interaction due to flow unsteadiness and non-linearity possesses the most common characteristic, whose complexity and tightly coupling property make it very hard to understand its physical behaviors. Also, the multi-scale characteristic of the helical vortex evolution poses a severe challenge to the computational fluid dynamics community. In this paper, a hybrid numerical method, blending 5th order weighted essentially non-oscillatory and 6th order cenitral schemes, implemented in a finite volume overset grid framework based on adaptive mesh refinement technique, are adopted to capture the evolution of vortical structure in a high resolution manner. The highly-resolved flow field of Caradonna-Tung rotor with two blades in hover, with a tip Mach number of 0.439 and a tip Reynolds number of 1.92×106, is obtained using delayed detached eddy simulation method. The averaged pressure coefficient distributions at 50%R, 68%R, 80%R, and 96%R stations show good agreement with experiment data, and the vortex trajectories during the stable stage, as well as the instantaneous turbulent kinetic energy distribution in the wake region, and also validate the computed result. In order to reveal the underlying physical mechanism of the helical vortex structure evolution, proper orthogonal decomposition analysis and Lagrangian coherent structures are adopted as a post processing procedure, which brings more details about the unsteady vortex system. The evolution characteristics of the vortex system are revealed as follows. 1) Trailing edge vortex sheet rolling-up and interaction with tip vortex strongly affect vortical stability and downstream nonlinear vortex-vortex behaviors. 2) The vortical system exhibits the spatiotemporal stability at an age less than 720°, and the vorticity decays with age and trajectories by power law, the distribution of circumferential velocity and the evolution of vortex core radius agree well with theoretical models. 3) Results of proper orthogonal decomposition analysis show that the mode of free stream and point vortex combination plays critical roles in the state transition of flow field. 4) Lagrangian coherent structure further gives the evolution process of helical vortex, and reveals the flow characteristics of vortex pairing and co-rotating, showing the effect of trailing edge vortex roll up phenomenon in the vortical system evolution.
      Corresponding author: Wang Fu-Xin, fuxinwang@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11372178).
    [1]

    Mager A 1972 J. Fluid Mech. 55 609

    [2]

    Devenport W J, Rife M C, Liapis S I, Follin G J 1996 J. Fluid Mech. 312 67

    [3]

    Mula S M, Stephenson J H, Tinney C E, Sirohi J 2011 AHS Southwest Region Technical Specialists's Meeting Fort Worth, USA, February 23-25, 2011 p1

    [4]

    Mula S M, Stephenson J H, Tinney C E, Sirohi J 2013 Exp. Fluids 54 1600

    [5]

    Komerath N, Ganesh B, Wong O 2004 34th AIAA Fluid Dynamics Conference and Exhibit Oregon, Portland, June 28-July 1, 2004 p1

    [6]

    McAlister K W 2004 J. Am. Helicopter Soc. 49 371

    [7]

    Milluzzo J, Leishman J G 2016 J. Am. Helicopter Soc. 61 012002

    [8]

    Jain R, Conlisk A T 2000 J. Am. Helicopter Soc. 45 157

    [9]

    Widnall S E 1972 J. Fluid Mech. 54 641

    [10]

    Hattori Y, Fukumoto Y 2009 Phys. Fluids 21 014104

    [11]

    Hattori Y, Fukumoto Y 2012 Phys. Fluids 24 054102

    [12]

    Sarmast S, Dadfar R, Mikkelsen R F, Schlatter P, Ivanell S, Sørensen J N, Henningson D S 2014 J. Fluid Mech. 755 705

    [13]

    Sørensen J N 2011 J. Fluid Mech. 682 1

    [14]

    Lignarolo L E M, Ragni D, Scarano F, Ferreira C J S, Bussel G J W 2015 J. Fluid Mech. 781 467

    [15]

    Ali M, Abid M 2014 J. Fluid Mech. 740 1

    [16]

    Mula S M, Tinney C E 2015 J. Fluid Mech. 769 570

    [17]

    Hamilton N, Tutkun M, Cal R B 2016 Phys. Fluids 28 025103

    [18]

    Weiss J M, Smith W A 1995 AIAA J. 33 2050

    [19]

    Spalart P R 2009 Annu. Rev. Fluid Mech. 41 181

    [20]

    Xiao Z X, Liu J, Huang J B, Fu S 2012 AIAA J. 50 1119

    [21]

    Sirovich L 1987 Quart. Appl. Math. 45 561

    [22]

    Hellström L H O, Ganapathisubramani B, Smits A J 2015 J. Fluid Mech. 779 701

    [23]

    Kostas J, Soria J, Chong M S 2005 Exp. Fluids 38 146

    [24]

    Luo J Q, Duan Y H, Xia Z H 2016 Acta Phys. Sin. 65 124702 (in Chinese) [罗佳奇, 段焰辉, 夏振华 2016 65 124702]

    [25]

    Lei P F, Zhang J Z, Wang Z P, Chen J H 2014 Acta Phys. Sin. 63 084702 (in Chinese) [雷鹏飞, 张家忠, 王琢璞, 陈嘉辉 2014 63 084702]

    [26]

    Pan C, Wang J J, Zhang C 2009 Sci. China: Phys. Mech. Astron. 39 627 (in Chinese) [潘翀, 王晋军, 张草 2009 中国科学G辑: 物理学 力学 天文学 39 627]

    [27]

    Haller G 2005 J. Fluid Mech. 525 1

    [28]

    Haller G 2015 Annu. Rev. Fluid Mech. 47 137

    [29]

    Cao X Q, Song J Q, Ren K J, Leng H Z, Yin F K 2014 Acta Phys. Sin. 63 180504 (in Chinese) [曹小群, 宋君强, 任开军, 冷洪泽, 银富康 2014 63 180504]

    [30]

    Caradonna F X, Tung C 1980 6th European Rotorcraft and Powered Lift Aircraft Forum Bristol, UK, September 16-19, 1980 p1

  • [1]

    Mager A 1972 J. Fluid Mech. 55 609

    [2]

    Devenport W J, Rife M C, Liapis S I, Follin G J 1996 J. Fluid Mech. 312 67

    [3]

    Mula S M, Stephenson J H, Tinney C E, Sirohi J 2011 AHS Southwest Region Technical Specialists's Meeting Fort Worth, USA, February 23-25, 2011 p1

    [4]

    Mula S M, Stephenson J H, Tinney C E, Sirohi J 2013 Exp. Fluids 54 1600

    [5]

    Komerath N, Ganesh B, Wong O 2004 34th AIAA Fluid Dynamics Conference and Exhibit Oregon, Portland, June 28-July 1, 2004 p1

    [6]

    McAlister K W 2004 J. Am. Helicopter Soc. 49 371

    [7]

    Milluzzo J, Leishman J G 2016 J. Am. Helicopter Soc. 61 012002

    [8]

    Jain R, Conlisk A T 2000 J. Am. Helicopter Soc. 45 157

    [9]

    Widnall S E 1972 J. Fluid Mech. 54 641

    [10]

    Hattori Y, Fukumoto Y 2009 Phys. Fluids 21 014104

    [11]

    Hattori Y, Fukumoto Y 2012 Phys. Fluids 24 054102

    [12]

    Sarmast S, Dadfar R, Mikkelsen R F, Schlatter P, Ivanell S, Sørensen J N, Henningson D S 2014 J. Fluid Mech. 755 705

    [13]

    Sørensen J N 2011 J. Fluid Mech. 682 1

    [14]

    Lignarolo L E M, Ragni D, Scarano F, Ferreira C J S, Bussel G J W 2015 J. Fluid Mech. 781 467

    [15]

    Ali M, Abid M 2014 J. Fluid Mech. 740 1

    [16]

    Mula S M, Tinney C E 2015 J. Fluid Mech. 769 570

    [17]

    Hamilton N, Tutkun M, Cal R B 2016 Phys. Fluids 28 025103

    [18]

    Weiss J M, Smith W A 1995 AIAA J. 33 2050

    [19]

    Spalart P R 2009 Annu. Rev. Fluid Mech. 41 181

    [20]

    Xiao Z X, Liu J, Huang J B, Fu S 2012 AIAA J. 50 1119

    [21]

    Sirovich L 1987 Quart. Appl. Math. 45 561

    [22]

    Hellström L H O, Ganapathisubramani B, Smits A J 2015 J. Fluid Mech. 779 701

    [23]

    Kostas J, Soria J, Chong M S 2005 Exp. Fluids 38 146

    [24]

    Luo J Q, Duan Y H, Xia Z H 2016 Acta Phys. Sin. 65 124702 (in Chinese) [罗佳奇, 段焰辉, 夏振华 2016 65 124702]

    [25]

    Lei P F, Zhang J Z, Wang Z P, Chen J H 2014 Acta Phys. Sin. 63 084702 (in Chinese) [雷鹏飞, 张家忠, 王琢璞, 陈嘉辉 2014 63 084702]

    [26]

    Pan C, Wang J J, Zhang C 2009 Sci. China: Phys. Mech. Astron. 39 627 (in Chinese) [潘翀, 王晋军, 张草 2009 中国科学G辑: 物理学 力学 天文学 39 627]

    [27]

    Haller G 2005 J. Fluid Mech. 525 1

    [28]

    Haller G 2015 Annu. Rev. Fluid Mech. 47 137

    [29]

    Cao X Q, Song J Q, Ren K J, Leng H Z, Yin F K 2014 Acta Phys. Sin. 63 180504 (in Chinese) [曹小群, 宋君强, 任开军, 冷洪泽, 银富康 2014 63 180504]

    [30]

    Caradonna F X, Tung C 1980 6th European Rotorcraft and Powered Lift Aircraft Forum Bristol, UK, September 16-19, 1980 p1

  • [1] Xu Si-Wei, Wang Xun-Si, Shen Xiang. Structure of GexGa8S92–x glasses studied by high-resolution X-ray photoelectron spectroscopy and Raman scattering. Acta Physica Sinica, 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [2] Zhong Zhi, Zhao Wan-Ting, Shan Ming-Guang, Liu Lei. Telecentric in-line-and-off-axis hybrid digital holographic high-resolution reconstruction method. Acta Physica Sinica, 2021, 70(15): 154202. doi: 10.7498/aps.70.20210190
    [3] Lü Hao-Chang, Zhao Yun-Chi, Yang Guang, Dong Bo-Wen, Qi Jie, Zhang Jing-Yan, Zhu Zhao-Zhao, Sun Yang, Yu Guang-Hua, Jiang Yong, Wei Hong-Xiang, Wang Jing, Lu Jun, Wang Zhi-Hong, Cai Jian-Wang, Shen Bao-Gen, Yang Feng, Zhang Shen-Jin, Wang Shou-Guo. High resolution imaging based on photo-emission electron microscopy excited by deep ultraviolet laser. Acta Physica Sinica, 2020, 69(9): 096801. doi: 10.7498/aps.69.20200083
    [4] Liu Fei, Wei Ya-Zhe, Han Ping-Li, Liu Jia-Wei, Shao Xiao-Peng. Design of monocentric wide field-of-view and high-resolution computational imaging system. Acta Physica Sinica, 2019, 68(8): 084201. doi: 10.7498/aps.68.20182229
    [5] Zhang Qian, Wang Ya-Hui, Zhang Ming-Jiang, Zhang Jian-Zhong, Qiao Li-Jun, Wang Tao, Zhao Le. Distributed temperature measurement with millimeter-level high spatial resolution based on chaotic laser. Acta Physica Sinica, 2019, 68(10): 104208. doi: 10.7498/aps.68.20190018
    [6] Zhu Xue-Tao, Guo Jian-Dong. Development of novel high-resolution electron energy loss spectroscopy and related studies on surface excitations. Acta Physica Sinica, 2018, 67(12): 127901. doi: 10.7498/aps.67.20180689
    [7] He Zu-Yuan, Liu Qing-Wen, Chen Jia-Geng. Ultrahigh resolution fiber optic strain sensing system for crustal deformation observation. Acta Physica Sinica, 2017, 66(7): 074208. doi: 10.7498/aps.66.074208
    [8] Jiao Ya-Yin, Ran Ling-Kun, Li Na, Gao Shou-Ting, Zhou Guan-Bo. High resolution numerical simulation of typhoon Mujigae (2015) and analysis of vortex Rossby waves. Acta Physica Sinica, 2017, 66(8): 089201. doi: 10.7498/aps.66.089201
    [9] Chen Da-Wei, Sun Hai-Quan, Wang Pei, Yu Xi-Jun, Ma Dong-Jun. Numerical investigation on the influence of gas-particle two-way coupling to the shock fluid in the two-dimensional Lagrangian framework. Acta Physica Sinica, 2016, 65(8): 084703. doi: 10.7498/aps.65.084703
    [10] Tian Yuan, Sun You-Wen, Xie Pin-Hua, Liu Cheng, Liu Wen-Qing, Liu Jian-Guo, Li Ang, Hu Ren-Zhi, Wang Wei, Zeng Yi. Observation of ambient CH4 variations using ground-based high resolution Fourier transform solar spectrometry. Acta Physica Sinica, 2015, 64(7): 070704. doi: 10.7498/aps.64.070704
    [11] Xu Xin-Ke, Liu Guo-Dong, Liu Bing-Guo, Chen Feng-Dong, Zhuang Zhi-Tao, Gan Yu. High-resolution laser frequency scanning interferometer based on fiber dispersion phase compensation. Acta Physica Sinica, 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [12] Shi Guang, Zhang Fu-Min, Qu Xing-Hua, Meng Xiang-Song. Absolute distance measurement by high resolution frequency modulated continuous wave laser. Acta Physica Sinica, 2014, 63(18): 184209. doi: 10.7498/aps.63.184209
    [13] Zheng Jing-Jing, Jian Shui-Sheng, Ma Lin, Bai Yun-Long, Pei Li, Ning Ti-Gang, Wen Ying-Hong. Solution refractive index sensor with wide-range high-resolution linear response based on short no-core fiber. Acta Physica Sinica, 2013, 62(15): 150703. doi: 10.7498/aps.62.150703
    [14] Tao Wei-Jun, Huan Shi. Study on Lagrangian analysis for solving the stress gradually along the time. Acta Physica Sinica, 2012, 61(20): 200703. doi: 10.7498/aps.61.200703
    [15] Sun Zeng-Guo, Han Chong-Zhao. Modeling high-resolution synthetic aperture radar images with heavy-tailed distributions. Acta Physica Sinica, 2010, 59(2): 998-1008. doi: 10.7498/aps.59.998
    [16] Zhao Gui-Min, Lu Ming-Zhu, Wan Ming-Xi, Fang Li. Study of vibro-acoustography with high spatial resolution based on sector array transducers. Acta Physica Sinica, 2009, 58(9): 6596-6603. doi: 10.7498/aps.58.6596
    [17] Xiang Liang-Zhong, Xing Da, Guo Hua, Yang Si-Hua. High resolution fast digital photoacoustic CT for breast cancer diagnosis. Acta Physica Sinica, 2009, 58(7): 4610-4617. doi: 10.7498/aps.58.4610
    [18] WANG ZHEN-XIA, RUAN MEI-LING, YANG JIN-QING, WANG WEN-MIN, YU GUO-QING. INVESTIGATION OF THE NOVEL CARBON NANOSTRUCTURES BY HIGH RESOLUTION ELECTRON MICROSCOPY. Acta Physica Sinica, 1999, 48(11): 2092-2097. doi: 10.7498/aps.48.2092
    [19] WANG ZHEN-XIA, HU JUN, WANG WEN-MIN, YU GUO-QING, RUAN MEI-LING. A HIGH RESOLUTION ELECTRON MICROSCOPY INVESTIGATION OF CURVATURE IN MULTILAYER GRAPHITE SHEETS. Acta Physica Sinica, 1998, 47(11): 1853-1857. doi: 10.7498/aps.47.1853
    [20] ZHU DE-ZHANG, PAN HAO-CHANG, CAO JIAN-QING, ZHU FU-YING, CHEN GUO-MING, CHEN GUO-LIANG, YANG JIE, ZOU SHI-CHANG. STUDY ON LOW ENERGY ION BEAM NITRIDATION OF Si BY HIGH RESOLUTION CHANNELING-BACKSCATTERING. Acta Physica Sinica, 1990, 39(8): 96-99. doi: 10.7498/aps.39.96
Metrics
  • Abstract views:  7179
  • PDF Downloads:  170
  • Cited By: 0
Publishing process
  • Received Date:  05 June 2017
  • Accepted Date:  18 September 2017
  • Published Online:  05 March 2018

/

返回文章
返回
Baidu
map