-
In order to better apply amphiphilic Janus particles to phase change heat transfer, the hydrophilic-superhydrophobic Janus particles are prepared with copper balls. The particle size is 1.0 mm and the bubble diameter is 3.0 mm. The behavior of Janus particle with small bubbles impinging on bubbles at different heights is studied. The falling heights are 0, 10.0, 20.0, 30.0 and 40.0 mm. The results show that there are obvious differences in behavior characteristic among Janus particles with different wettability surfaces when they hit the bubble. When the superhydrophobic side contacts the bubble, it will slide to the bottom of the bubble without rotation along the bubble surface; when the hydrophilic side contacts the bubble, it will first slide along the bubble surface for a certain distance, and then rotate, resulting in strong disturbance to the bubble. When the interface between hydrophilic and superhydrophobic contacts the bubble, the particle will start to rotate at the moment of contact. When Janus particle impacts the bubble at a certain height, the hydrophilic surface generally contacts bubble first. With the increase of height, the degree of deformation of Janus particles pulling bubbles increases. The force analysis shows that the main reason for the rotation of Janus particles is that the action points and directions of capillary force acting on different wettable surfaces are different, resulting in corresponding rotation torque.
-
Keywords:
- Janus particle /
- bubble /
- collision /
- behavioral characteristic
[1] 王永贵, 张国俊, 崔晓俊 2018 中兴通讯技术 24 48Google Scholar
Wang Y G, Zhang G J, Cui X J 2018 ZTE. Tech. J. 24 48Google Scholar
[2] 魏进家, 张永海 2016 化工学报 67 97Google Scholar
Wei J J, Zhang Y H 2016 J. Chem. Ind. Eng. 67 97Google Scholar
[3] 林石泉, 赵雅鑫, 吕中原, 赖展程, 胡海涛 2021 化工学报 72 295Google Scholar
Lin S Q, Zhao Y X, Lü Z Y, Lai Z C, Hu H T 2021 J. Chem. Ind. Eng. 72 295Google Scholar
[4] Nam Y, Aktinol E, Dhir V K, Ju Y S 2011 Int. J. Heat Mass Transfer 54 1572Google Scholar
[5] You S M, Kim J H, Kim K H 2003 Appl. Phys. Lett. 83 3374Google Scholar
[6] Vassallo P, Kumar R, D'Amico S 2004 Int. J. Heat Mass Transfer 47 407Google Scholar
[7] Bang I C, Chang S H 2005 Int. J. Heat Mass Transfer 48 2407Google Scholar
[8] 彭家略, 郭浩, 尤天涯, 纪献兵, 徐进良 2021 70 044701Google Scholar
Peng J L, Guo H, You T Y, Ji X B, Xu J L 2021 Acta Phys. Sin. 70 044701Google Scholar
[9] Sarrot V, Guiraud P, Legendre D 2005 Chem. Eng. Sci. 60 6107Google Scholar
[10] Legendre D, Sarrot V, Guiraud P 2009 Int. J. Multiphase Flow 35 163Google Scholar
[11] Moreno-Atanasio R, Gao Y, Neville F, Evans G M, Wanless E J 2016 Chem. Eng. Res. Des. 109 354Google Scholar
[12] Gao Y, Evans G M, Wanless E J, Moreno-Atanasio R 2014 Adv. Powder Technol. 25 1177Google Scholar
[13] Whelan P F, Brown D J 1956 Trans. Inst. Min. Metall. 65 181
[14] Nguyen A V, Evans G M 2004 J. Colloid Interface Sci. 273 271Google Scholar
[15] Wang W, Zhou Z, Nandakumar K, Xu Z, Masliyah J H 2003 J. Colloid Interface Sci. 259 81Google Scholar
[16] Scheludko W, Toshev B V, Bojadjiev D T 1976 J. Chem. Soc., Faraday Trans. 72 2815Google Scholar
[17] Paulsen F G, Pan R, Bousfield D W, Thompson E V 1996 J. Colloid Interface Sci. 178 400Google Scholar
[18] Wang W, Zhou Z, Nandakumar K, Xu Z, Masliyah J H 2003 Int. J. Miner. Process. 68 47Google Scholar
[19] Nguyen A V 2007 Int. J. Environment and Pollution 30 231Google Scholar
[20] Gao Y, Wang G, Evans G M, Wanless E J, Sathe M, Mitra S, Moreno-Atanasio R 2015 Procedia. Eng. 102 1346Google Scholar
[21] Gennes P 1992 Angew. Chem. Int. Ed. 31 842Google Scholar
[22] 肖轶, 孟东, 徐呈艺, 张瑞华, 姚燕生, 吴思竹, 姚成立 2020 中国激光 47 133
Xiao Y, Meng D, Xu C Y, Zhang R H, Yao Y S, Wu S Z, Yao C L 2020 Chin. J. Lasers 47 133
[23] 王雷磊, 崔海航, 张静, 郑旭, 王磊, 陈力 2016 65 220201Google Scholar
Wang L L, Cui H H, Zhang J, Zheng X, Wang L, Chen L 2016 Acta Phys. Sin. 65 220201Google Scholar
[24] Yuan Y, Gao C Y, Wang D L, Zhou C, Zhu B H, He Q 2019 J. Nanotechnol. 10 1324Google Scholar
[25] Dong X F, Gustafsson E, Price M, Dai Z F, Xu M Q, Pelton R 2017 Colloids Surf. A 533 159Google Scholar
[26] Khurana G, Sahoo N, Dhar P 2019 Phys. Fluids 31 072003Google Scholar
[27] Manica R, Klaseboer E, Chan D Y C 2015 Langmuir 31 6763Google Scholar
[28] Sun Z 2017 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)
[29] Sun Q, Klaseboer E, Khoo B C, Chan D Y C 2013 Phys. Rev. E 87 043009Google Scholar
[30] Safaei S, Archereau A, Hendy S C, Willmott G R 2019 Soft Matter 15 6742Google Scholar
[31] Safaei S, Hendy S C, Willmott G R 2020 Soft Matter 16 7116Google Scholar
[32] Drzymala J 1994 Int. J. Mine. Process. 42 153Google Scholar
[33] Zhang Y, Liu Q, Li W B, Lian X L, Li J L, Rao X X 2020 Can. J. Phys. 98 981Google Scholar
[34] Nguyen A V, Evans G M 2004 Exp. Therm. Fluid Sci. 28 381Google Scholar
[35] 胡岳华, 邱冠周, 王淀佐 1994 中南矿冶学院学报 25 310
Hu Y H, Qiu G Z, Wang D Z 1994 J. Cent. South Inst. Min. Metall. 25 310
[36] Ducker W A, Xu Z, Israelachvili J N 1994 Langmuir 10 3279Google Scholar
-
图 3 实验装置图(1, 高速摄影仪; 2, 数据采集仪; 3, xyz三轴微位移平台; 4, 亚克力玻璃池; 5, 实验样品; 6, 气泡; 7, 高精度注射器; 8, LED背光灯)
Figure 3. Diagram of the experimental device. 1, high-speed camera; 2, data collector; 3, xyz three-axes micro-displacement platform; 4, acrylic glass cell; 5, experimental sample; 6, bubble; 7, high-precision syringe; 8, LED backlight.
图 7 Janus颗粒旋转过程中的受力分析 (a) Janus颗粒中心受力图; (b) 三相接触线上超疏水侧与亲水侧的受力图 (包括重力
${F_{\text{g}}}$ , 浮力$ {F_{\text{b}}} $ , 接触力${F_{{\text{con}}}}$ , 流体阻力${F_{\text{d}}}$ , 过余力${F_{\text{e}}}$ , 疏水力${F_{{\text{hy}}}}$ , 亲水侧毛细力${F_{\text{q}}}$ 和超疏水侧毛细力${F_{{\text{cs}}}}$ )Figure 7. Force analysis on Janus particle during rotation: (a) Force diagram of Janus particle’s central; (b) the forcediagram of superhydrophobic side and hydrophilic side on three phase contact line (Including gravity
${F_{\text{g}}}$ , buoyancy$ {F_{\text{b}}} $ , contact force${F_{{\text{con}}}}$ , drag force${F_{\text{d}}}$ , excess force${F_{\text{e}}}$ , hydrophobic force${F_{{\text{hy}}}}$ , hydrophilic side capillary force${F_{\text{q}}}$ , andsuperhydrophobic side capillary force${F_{{\text{cs}}}}$ ). -
[1] 王永贵, 张国俊, 崔晓俊 2018 中兴通讯技术 24 48Google Scholar
Wang Y G, Zhang G J, Cui X J 2018 ZTE. Tech. J. 24 48Google Scholar
[2] 魏进家, 张永海 2016 化工学报 67 97Google Scholar
Wei J J, Zhang Y H 2016 J. Chem. Ind. Eng. 67 97Google Scholar
[3] 林石泉, 赵雅鑫, 吕中原, 赖展程, 胡海涛 2021 化工学报 72 295Google Scholar
Lin S Q, Zhao Y X, Lü Z Y, Lai Z C, Hu H T 2021 J. Chem. Ind. Eng. 72 295Google Scholar
[4] Nam Y, Aktinol E, Dhir V K, Ju Y S 2011 Int. J. Heat Mass Transfer 54 1572Google Scholar
[5] You S M, Kim J H, Kim K H 2003 Appl. Phys. Lett. 83 3374Google Scholar
[6] Vassallo P, Kumar R, D'Amico S 2004 Int. J. Heat Mass Transfer 47 407Google Scholar
[7] Bang I C, Chang S H 2005 Int. J. Heat Mass Transfer 48 2407Google Scholar
[8] 彭家略, 郭浩, 尤天涯, 纪献兵, 徐进良 2021 70 044701Google Scholar
Peng J L, Guo H, You T Y, Ji X B, Xu J L 2021 Acta Phys. Sin. 70 044701Google Scholar
[9] Sarrot V, Guiraud P, Legendre D 2005 Chem. Eng. Sci. 60 6107Google Scholar
[10] Legendre D, Sarrot V, Guiraud P 2009 Int. J. Multiphase Flow 35 163Google Scholar
[11] Moreno-Atanasio R, Gao Y, Neville F, Evans G M, Wanless E J 2016 Chem. Eng. Res. Des. 109 354Google Scholar
[12] Gao Y, Evans G M, Wanless E J, Moreno-Atanasio R 2014 Adv. Powder Technol. 25 1177Google Scholar
[13] Whelan P F, Brown D J 1956 Trans. Inst. Min. Metall. 65 181
[14] Nguyen A V, Evans G M 2004 J. Colloid Interface Sci. 273 271Google Scholar
[15] Wang W, Zhou Z, Nandakumar K, Xu Z, Masliyah J H 2003 J. Colloid Interface Sci. 259 81Google Scholar
[16] Scheludko W, Toshev B V, Bojadjiev D T 1976 J. Chem. Soc., Faraday Trans. 72 2815Google Scholar
[17] Paulsen F G, Pan R, Bousfield D W, Thompson E V 1996 J. Colloid Interface Sci. 178 400Google Scholar
[18] Wang W, Zhou Z, Nandakumar K, Xu Z, Masliyah J H 2003 Int. J. Miner. Process. 68 47Google Scholar
[19] Nguyen A V 2007 Int. J. Environment and Pollution 30 231Google Scholar
[20] Gao Y, Wang G, Evans G M, Wanless E J, Sathe M, Mitra S, Moreno-Atanasio R 2015 Procedia. Eng. 102 1346Google Scholar
[21] Gennes P 1992 Angew. Chem. Int. Ed. 31 842Google Scholar
[22] 肖轶, 孟东, 徐呈艺, 张瑞华, 姚燕生, 吴思竹, 姚成立 2020 中国激光 47 133
Xiao Y, Meng D, Xu C Y, Zhang R H, Yao Y S, Wu S Z, Yao C L 2020 Chin. J. Lasers 47 133
[23] 王雷磊, 崔海航, 张静, 郑旭, 王磊, 陈力 2016 65 220201Google Scholar
Wang L L, Cui H H, Zhang J, Zheng X, Wang L, Chen L 2016 Acta Phys. Sin. 65 220201Google Scholar
[24] Yuan Y, Gao C Y, Wang D L, Zhou C, Zhu B H, He Q 2019 J. Nanotechnol. 10 1324Google Scholar
[25] Dong X F, Gustafsson E, Price M, Dai Z F, Xu M Q, Pelton R 2017 Colloids Surf. A 533 159Google Scholar
[26] Khurana G, Sahoo N, Dhar P 2019 Phys. Fluids 31 072003Google Scholar
[27] Manica R, Klaseboer E, Chan D Y C 2015 Langmuir 31 6763Google Scholar
[28] Sun Z 2017 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)
[29] Sun Q, Klaseboer E, Khoo B C, Chan D Y C 2013 Phys. Rev. E 87 043009Google Scholar
[30] Safaei S, Archereau A, Hendy S C, Willmott G R 2019 Soft Matter 15 6742Google Scholar
[31] Safaei S, Hendy S C, Willmott G R 2020 Soft Matter 16 7116Google Scholar
[32] Drzymala J 1994 Int. J. Mine. Process. 42 153Google Scholar
[33] Zhang Y, Liu Q, Li W B, Lian X L, Li J L, Rao X X 2020 Can. J. Phys. 98 981Google Scholar
[34] Nguyen A V, Evans G M 2004 Exp. Therm. Fluid Sci. 28 381Google Scholar
[35] 胡岳华, 邱冠周, 王淀佐 1994 中南矿冶学院学报 25 310
Hu Y H, Qiu G Z, Wang D Z 1994 J. Cent. South Inst. Min. Metall. 25 310
[36] Ducker W A, Xu Z, Israelachvili J N 1994 Langmuir 10 3279Google Scholar
Catalog
Metrics
- Abstract views: 4115
- PDF Downloads: 47
- Cited By: 0