搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性

苏斌斌 陈建军 吴正茂 夏光琼

引用本文:
Citation:

混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性

苏斌斌, 陈建军, 吴正茂, 夏光琼

Performances of time-delay signature and bandwidth of the chaos generated by a vertical-cavity surface-emitting laser under chaotic optical injection

Su Bin-Bin, Chen Jian-Jun, Wu Zheng-Mao, Xia Guang-Qiong
PDF
导出引用
  • 提出并仿真论证了利用一个双光反馈垂直腔面发射激光器(定义为主VCSEL,M-VCSEL)产生的混沌光平行单向注入到另一个VCSEL(定义为副VCSEL,S-VCSEL)使所产生的混沌信号的延时特征(TDS)和带宽特性得以优化的技术方案.首先,基于VCSELs自旋反转模型,结合自相关分析方法,通过对系统参量进行优化,可使双光反馈M-VCSEL的X偏振分量(X-PC)和Y偏振分量(Y-PC)均输出混沌信号,且两路混沌信号的平均强度相当、TDS均较弱;在此基础上,将双光反馈M-VCSEL在优化条件下得到的混沌信号平行单向注入到S-VCSEL中,以获得两路TDS得到抑制、带宽更宽的混沌信号.通过考察两个偏振分量输出混沌信号的TDS以及混沌带宽在注入强度和频率失谐构成的参数空间的演化规律,确定了系统获取两路TDS被抑制、宽带宽的混沌信号所需的注入参数范围.
    Time-delay signature (TDS) and effective bandwidth (EBW) are two key performance indexes to evaluate a chaos signal generated by a laser system including delay-time feedback. In this paper, we propose and simulate a technical scheme to optimize the TDS and EBW of chaotic signal generated by a slave vertical-cavity surface-emitting laser (S-VCSEL) under chaotic optical injection from a master vertical-cavity surface-emitting laser (M-VCSEL), which is subjected to double external-cavity feedback. First, based on the spin-flip model of a VCSEL subjected to two double external-cavity feedback, the time series of two orthogonal polarization components (referred to as X-component (X-PC) and Y-component (Y-PC), respectively) in the M-VCSEL can be obtained. Furthermore, with the help of self-correlation function (SF) analysis method, the TDSs of X-PC and Y-PC can be evaluated. The results show that through selecting suitable system operation parameters, X-PC and Y-PC in the M-VCSEL can simultaneously output chaotic signals with equivalently average intensity and weak TDS. Under optimized operation parameters, the peak values of the SF (σ) of the chaotic signal are 0.20 for X-PC and 0.16 for Y-PC, respectively, and the EBWs of the chaotic signal are 10.72 GHz for X-PC and 10.10 GHz for Y-PC, respectively. The chaotic signals output from the M-VCSEL under optimized operation parameters are injected into the S-VCSEL for further weakening TDS and enhancing EBW. Through examining the evolution rules of TDS and EBW of polarization-resolved chaotic signals in the parameter space composed of injection strength and frequency detuning, the ranges of optimizing injection parameters are determined for achieving two-channel chaotic signals with well suppressed TDS (σ 15 GHz).
      通信作者: 吴正茂, zmwu@swu.edu.cn;gqxia@swu.edu.cn ; 夏光琼, zmwu@swu.edu.cn;gqxia@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61475127,61575163,61775184)资助的课题.
      Corresponding author: Wu Zheng-Mao, zmwu@swu.edu.cn;gqxia@swu.edu.cn ; Xia Guang-Qiong, zmwu@swu.edu.cn;gqxia@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475127, 61575163, 61775184).
    [1]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [2]

    Li N Q, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Xiang S Y 2012 IEEE Photon. Technol. Lett. 24 1072

    [3]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619

    [4]

    Zhong D Z, Deng T, Zheng G L 2014 Acta Phys. Sin. 63 70504 (in Chinese) [钟东洲, 邓涛, 郑国梁 2014 63 70504]

    [5]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991

    [6]

    Oliver N, Soriano M C, Sukow D W, Fischer I 2013 IEEE J. Quantum Electron. 49 910

    [7]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Dovis P 2008 Nat. Photon. 2 728

    [8]

    Sakuraba R, Iwakawa K, Kanno K, Uchida A 2015 Opt. Express 23 1470

    [9]

    Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452

    [10]

    Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Electron. 45 879

    [11]

    Kong L Q, Wang A B, Wang H H, Wang Y C 2008 Acta Phys. Sin. 57 2266 (in Chinese) [孔令琴, 王安邦, 王海红, 王云才 2008 57 2266]

    [12]

    Zhang L Y, Pan W, Yan L S, Luo B, Zou X H, Xiang S Y, Li N Q 2012 IEEE Photon. Technol. Lett. 24 1693

    [13]

    Hwang S K, Liu J M 2000 Opt. Commun. 183 195

    [14]

    Yan S L 2012 Acta Phys. Sin. 61 160505 (in Chinese) [颜森林 2012 61 160505]

    [15]

    Lin F Y, Liu J M 2003 IEEE J. Quantum Electron. 39 562

    [16]

    Zhang W L, Pan W, Luo B, Li X F, Zou X H, Wang M Y 2007 Appl. Opt. 46 7262

    [17]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [18]

    Guo Y Y, Wu Y, Wang Y C 2012 Chin. Opt. Lett. 10 061901

    [19]

    Short K M, Parker A T 1998 Phys. Rev. E 58 1159

    [20]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960

    [21]

    Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124

    [22]

    Zhu X H, Cheng M F, Deng L, Jiang X X, Ke C J, Zhang M M, Fu S N, Tang M, Shum P, Liu D M 2017 IEEE Photon. J. 9 6601009

    [23]

    Ke J X, Yi L L, Hou T T, Hu Y, Xia G Q, Hu W S 2017 IEEE Photon. J. 9 7200808

    [24]

    Iga K 2000 IEEE J. Sel. Top. Quantum Electron. 6 1201

    [25]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Li N Q, Zhu H N 2012 IEEE Photon. Technol. Lett. 24 1267

    [26]

    Zhang X X, Zhang S H, Wu T A, Sun W Y 2016 Acta Phys. Sin. 65 214206 (in Chinese) [张晓旭, 张胜海, 吴天安, 孙巍阳 2016 65 214206]

    [27]

    Lin H, Hong Y H, Shore K A 2014 J. Lightwave Technol. 32 1829

    [28]

    Yang X J, Chen J J, Xia G Q, Wu J G, Wu Z M 2015 Acta Phys. Sin. 64 224213 (in Chinese) [杨显杰, 陈建军, 夏光琼, 吴加贵, 吴正茂 2015 64 224213]

    [29]

    San Miguel M, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [30]

    Martin-Regalado J, Prati F, San Miguel M, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [31]

    Xiao P, Wu Z M, Wu J G, Jiang L, Deng T, Tang X, Fan L, Xia G Q 2013 Opt. Commun. 286 339

    [32]

    Liu H J, Li N Q, Zhao Q C 2015 Appl. Opt. 54 4380

    [33]

    Sodermann M, Weinkath M, Ackemann T 2004 IEEE J. Quantum Electron. 40 97

    [34]

    Elsonbaty A, Hegazy S F, Obayya S S A 2015 IEEE J. Quantum Electron. 51 2400309

    [35]

    Lin F Y, Chao Y K, Wu T C 2012 IEEE J. Quantum Electron. 48 1010

    [36]

    Kanno K, Uchida A, Bunsen M 2016 Phys. Rev. E 93 032206

    [37]

    Zhong Z Q, Wu Z M, Wu J G, Xia G Q 2013 IEEE Photon. J. 5 1500409

  • [1]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [2]

    Li N Q, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Xiang S Y 2012 IEEE Photon. Technol. Lett. 24 1072

    [3]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619

    [4]

    Zhong D Z, Deng T, Zheng G L 2014 Acta Phys. Sin. 63 70504 (in Chinese) [钟东洲, 邓涛, 郑国梁 2014 63 70504]

    [5]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991

    [6]

    Oliver N, Soriano M C, Sukow D W, Fischer I 2013 IEEE J. Quantum Electron. 49 910

    [7]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Dovis P 2008 Nat. Photon. 2 728

    [8]

    Sakuraba R, Iwakawa K, Kanno K, Uchida A 2015 Opt. Express 23 1470

    [9]

    Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452

    [10]

    Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Electron. 45 879

    [11]

    Kong L Q, Wang A B, Wang H H, Wang Y C 2008 Acta Phys. Sin. 57 2266 (in Chinese) [孔令琴, 王安邦, 王海红, 王云才 2008 57 2266]

    [12]

    Zhang L Y, Pan W, Yan L S, Luo B, Zou X H, Xiang S Y, Li N Q 2012 IEEE Photon. Technol. Lett. 24 1693

    [13]

    Hwang S K, Liu J M 2000 Opt. Commun. 183 195

    [14]

    Yan S L 2012 Acta Phys. Sin. 61 160505 (in Chinese) [颜森林 2012 61 160505]

    [15]

    Lin F Y, Liu J M 2003 IEEE J. Quantum Electron. 39 562

    [16]

    Zhang W L, Pan W, Luo B, Li X F, Zou X H, Wang M Y 2007 Appl. Opt. 46 7262

    [17]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [18]

    Guo Y Y, Wu Y, Wang Y C 2012 Chin. Opt. Lett. 10 061901

    [19]

    Short K M, Parker A T 1998 Phys. Rev. E 58 1159

    [20]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960

    [21]

    Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124

    [22]

    Zhu X H, Cheng M F, Deng L, Jiang X X, Ke C J, Zhang M M, Fu S N, Tang M, Shum P, Liu D M 2017 IEEE Photon. J. 9 6601009

    [23]

    Ke J X, Yi L L, Hou T T, Hu Y, Xia G Q, Hu W S 2017 IEEE Photon. J. 9 7200808

    [24]

    Iga K 2000 IEEE J. Sel. Top. Quantum Electron. 6 1201

    [25]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Li N Q, Zhu H N 2012 IEEE Photon. Technol. Lett. 24 1267

    [26]

    Zhang X X, Zhang S H, Wu T A, Sun W Y 2016 Acta Phys. Sin. 65 214206 (in Chinese) [张晓旭, 张胜海, 吴天安, 孙巍阳 2016 65 214206]

    [27]

    Lin H, Hong Y H, Shore K A 2014 J. Lightwave Technol. 32 1829

    [28]

    Yang X J, Chen J J, Xia G Q, Wu J G, Wu Z M 2015 Acta Phys. Sin. 64 224213 (in Chinese) [杨显杰, 陈建军, 夏光琼, 吴加贵, 吴正茂 2015 64 224213]

    [29]

    San Miguel M, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [30]

    Martin-Regalado J, Prati F, San Miguel M, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [31]

    Xiao P, Wu Z M, Wu J G, Jiang L, Deng T, Tang X, Fan L, Xia G Q 2013 Opt. Commun. 286 339

    [32]

    Liu H J, Li N Q, Zhao Q C 2015 Appl. Opt. 54 4380

    [33]

    Sodermann M, Weinkath M, Ackemann T 2004 IEEE J. Quantum Electron. 40 97

    [34]

    Elsonbaty A, Hegazy S F, Obayya S S A 2015 IEEE J. Quantum Electron. 51 2400309

    [35]

    Lin F Y, Chao Y K, Wu T C 2012 IEEE J. Quantum Electron. 48 1010

    [36]

    Kanno K, Uchida A, Bunsen M 2016 Phys. Rev. E 93 032206

    [37]

    Zhong Z Q, Wu Z M, Wu J G, Xia G Q 2013 IEEE Photon. J. 5 1500409

  • [1] 闫观鑫, 郝永芹, 张秋波. 高功率垂直腔面发射激光器阵列热特性.  , 2024, 73(5): 054204. doi: 10.7498/aps.73.20231614
    [2] 穆鹏华, 陈昊, 刘国鹏, 胡国四. 级联耦合纳米激光器混沌时延特征消除和带宽增强.  , 2024, 73(10): 104204. doi: 10.7498/aps.73.20231643
    [3] 庞爽, 冯玉玲, 于萍, 姚治海. 自混沌光相位调制光反馈半导体激光器输出光的混沌特性.  , 2022, 71(15): 150502. doi: 10.7498/aps.71.20220204
    [4] 张依宁, 冯玉玲, 王晓茜, 赵振明, 高超, 姚治海. 半导体激光器混沌输出的延时特征和带宽.  , 2020, 69(9): 090501. doi: 10.7498/aps.69.20191881
    [5] 李增, 冯玉玲, 王晓茜, 姚治海. 半导体激光器输出混沌光的延时特性和带宽.  , 2018, 67(14): 140501. doi: 10.7498/aps.67.20180035
    [6] 起俊丰, 钟祝强, 王广娜, 夏光琼, 吴正茂. 高斯切趾型光纤布拉格光栅外腔半导体激光器的混沌输出特性.  , 2017, 66(24): 244207. doi: 10.7498/aps.66.244207
    [7] 杨峰, 唐曦, 钟祝强, 夏光琼, 吴正茂. 基于偏振旋转耦合1550 nm垂直腔面发射激光器环形系统产生多路高质量混沌信号.  , 2016, 65(19): 194207. doi: 10.7498/aps.65.194207
    [8] 刘庆喜, 潘炜, 张力月, 李念强, 阎娟. 基于外光注入互耦合垂直腔面发射激光器的混沌随机特性研究.  , 2015, 64(2): 024209. doi: 10.7498/aps.64.024209
    [9] 杨显杰, 陈建军, 夏光琼, 吴加贵, 吴正茂. 主副垂直腔面发射激光器动力学系统混沌输出的时延特征及带宽分析.  , 2015, 64(22): 224213. doi: 10.7498/aps.64.224213
    [10] 邓伟, 夏光琼, 吴正茂. 基于双光反馈垂直腔面发射激光器的双信道混沌同步通信.  , 2013, 62(16): 164209. doi: 10.7498/aps.62.164209
    [11] 毛明明, 徐晨, 魏思民, 解意洋, 刘久澄, 许坤. 质子注入能量对垂直腔面发射激光器的阈值和功率的影响.  , 2012, 61(21): 214207. doi: 10.7498/aps.61.214207
    [12] 刘发, 徐晨, 赵振波, 周康, 解意洋, 毛明明, 魏思民, 曹田, 沈光地. 氧化孔形状对光子晶体垂直腔面发射激光器模式的影响.  , 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [13] 郝永芹, 冯源, 王菲, 晏长岭, 赵英杰, 王晓华, 王玉霞, 姜会林, 高欣, 薄报学. 808nm大孔径垂直腔面发射激光器研究.  , 2011, 60(6): 064201. doi: 10.7498/aps.60.064201
    [14] 颜森林. 交叉相位调制提高半导体激光器混沌载波发射机带宽方法.  , 2010, 59(6): 3810-3816. doi: 10.7498/aps.59.3810
    [15] 杨玲珍, 乔占朵, 邬云翘, 王云才. 掺铒光纤环形激光器混沌带宽特性数值研究.  , 2010, 59(6): 3965-3972. doi: 10.7498/aps.59.3965
    [16] 赵严峰. 双反馈半导体激光器的混沌特性研究.  , 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [17] 杨 浩, 郭 霞, 关宝璐, 王同喜, 沈光地. 注入电流对垂直腔面发射激光器横模特性的影响.  , 2008, 57(5): 2959-2965. doi: 10.7498/aps.57.2959
    [18] 彭红玲, 韩 勤, 杨晓红, 牛智川. 1.3μm量子点垂直腔面发射激光器高频响应的优化设计.  , 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [19] 王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭 萍. 光注入提高半导体激光器混沌载波发射机的带宽.  , 2007, 56(8): 4372-4377. doi: 10.7498/aps.56.4372
    [20] 赵红东, 康志龙, 王胜利, 陈国鹰, 张以谟. 高速调制响应垂直腔面发射激光器中的微腔效应.  , 2003, 52(1): 77-80. doi: 10.7498/aps.52.77
计量
  • 文章访问数:  6549
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-30
  • 修回日期:  2017-07-21
  • 刊出日期:  2017-12-05

/

返回文章
返回
Baidu
map