-
提出并仿真论证了利用一个双光反馈垂直腔面发射激光器(定义为主VCSEL,M-VCSEL)产生的混沌光平行单向注入到另一个VCSEL(定义为副VCSEL,S-VCSEL)使所产生的混沌信号的延时特征(TDS)和带宽特性得以优化的技术方案.首先,基于VCSELs自旋反转模型,结合自相关分析方法,通过对系统参量进行优化,可使双光反馈M-VCSEL的X偏振分量(X-PC)和Y偏振分量(Y-PC)均输出混沌信号,且两路混沌信号的平均强度相当、TDS均较弱;在此基础上,将双光反馈M-VCSEL在优化条件下得到的混沌信号平行单向注入到S-VCSEL中,以获得两路TDS得到抑制、带宽更宽的混沌信号.通过考察两个偏振分量输出混沌信号的TDS以及混沌带宽在注入强度和频率失谐构成的参数空间的演化规律,确定了系统获取两路TDS被抑制、宽带宽的混沌信号所需的注入参数范围.Time-delay signature (TDS) and effective bandwidth (EBW) are two key performance indexes to evaluate a chaos signal generated by a laser system including delay-time feedback. In this paper, we propose and simulate a technical scheme to optimize the TDS and EBW of chaotic signal generated by a slave vertical-cavity surface-emitting laser (S-VCSEL) under chaotic optical injection from a master vertical-cavity surface-emitting laser (M-VCSEL), which is subjected to double external-cavity feedback. First, based on the spin-flip model of a VCSEL subjected to two double external-cavity feedback, the time series of two orthogonal polarization components (referred to as X-component (X-PC) and Y-component (Y-PC), respectively) in the M-VCSEL can be obtained. Furthermore, with the help of self-correlation function (SF) analysis method, the TDSs of X-PC and Y-PC can be evaluated. The results show that through selecting suitable system operation parameters, X-PC and Y-PC in the M-VCSEL can simultaneously output chaotic signals with equivalently average intensity and weak TDS. Under optimized operation parameters, the peak values of the SF (σ) of the chaotic signal are 0.20 for X-PC and 0.16 for Y-PC, respectively, and the EBWs of the chaotic signal are 10.72 GHz for X-PC and 10.10 GHz for Y-PC, respectively. The chaotic signals output from the M-VCSEL under optimized operation parameters are injected into the S-VCSEL for further weakening TDS and enhancing EBW. Through examining the evolution rules of TDS and EBW of polarization-resolved chaotic signals in the parameter space composed of injection strength and frequency detuning, the ranges of optimizing injection parameters are determined for achieving two-channel chaotic signals with well suppressed TDS (σ 15 GHz).
-
Keywords:
- vertical-cavity surface-emitting lasers /
- chaos /
- time-delay signature /
- bandwidth
[1] Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343
[2] Li N Q, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Xiang S Y 2012 IEEE Photon. Technol. Lett. 24 1072
[3] Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619
[4] Zhong D Z, Deng T, Zheng G L 2014 Acta Phys. Sin. 63 70504 (in Chinese) [钟东洲, 邓涛, 郑国梁 2014 63 70504]
[5] Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991
[6] Oliver N, Soriano M C, Sukow D W, Fischer I 2013 IEEE J. Quantum Electron. 49 910
[7] Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Dovis P 2008 Nat. Photon. 2 728
[8] Sakuraba R, Iwakawa K, Kanno K, Uchida A 2015 Opt. Express 23 1470
[9] Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452
[10] Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Electron. 45 879
[11] Kong L Q, Wang A B, Wang H H, Wang Y C 2008 Acta Phys. Sin. 57 2266 (in Chinese) [孔令琴, 王安邦, 王海红, 王云才 2008 57 2266]
[12] Zhang L Y, Pan W, Yan L S, Luo B, Zou X H, Xiang S Y, Li N Q 2012 IEEE Photon. Technol. Lett. 24 1693
[13] Hwang S K, Liu J M 2000 Opt. Commun. 183 195
[14] Yan S L 2012 Acta Phys. Sin. 61 160505 (in Chinese) [颜森林 2012 61 160505]
[15] Lin F Y, Liu J M 2003 IEEE J. Quantum Electron. 39 562
[16] Zhang W L, Pan W, Luo B, Li X F, Zou X H, Wang M Y 2007 Appl. Opt. 46 7262
[17] Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102
[18] Guo Y Y, Wu Y, Wang Y C 2012 Chin. Opt. Lett. 10 061901
[19] Short K M, Parker A T 1998 Phys. Rev. E 58 1159
[20] Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960
[21] Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124
[22] Zhu X H, Cheng M F, Deng L, Jiang X X, Ke C J, Zhang M M, Fu S N, Tang M, Shum P, Liu D M 2017 IEEE Photon. J. 9 6601009
[23] Ke J X, Yi L L, Hou T T, Hu Y, Xia G Q, Hu W S 2017 IEEE Photon. J. 9 7200808
[24] Iga K 2000 IEEE J. Sel. Top. Quantum Electron. 6 1201
[25] Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Li N Q, Zhu H N 2012 IEEE Photon. Technol. Lett. 24 1267
[26] Zhang X X, Zhang S H, Wu T A, Sun W Y 2016 Acta Phys. Sin. 65 214206 (in Chinese) [张晓旭, 张胜海, 吴天安, 孙巍阳 2016 65 214206]
[27] Lin H, Hong Y H, Shore K A 2014 J. Lightwave Technol. 32 1829
[28] Yang X J, Chen J J, Xia G Q, Wu J G, Wu Z M 2015 Acta Phys. Sin. 64 224213 (in Chinese) [杨显杰, 陈建军, 夏光琼, 吴加贵, 吴正茂 2015 64 224213]
[29] San Miguel M, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728
[30] Martin-Regalado J, Prati F, San Miguel M, Abraham N B 1997 IEEE J. Quantum Electron. 33 765
[31] Xiao P, Wu Z M, Wu J G, Jiang L, Deng T, Tang X, Fan L, Xia G Q 2013 Opt. Commun. 286 339
[32] Liu H J, Li N Q, Zhao Q C 2015 Appl. Opt. 54 4380
[33] Sodermann M, Weinkath M, Ackemann T 2004 IEEE J. Quantum Electron. 40 97
[34] Elsonbaty A, Hegazy S F, Obayya S S A 2015 IEEE J. Quantum Electron. 51 2400309
[35] Lin F Y, Chao Y K, Wu T C 2012 IEEE J. Quantum Electron. 48 1010
[36] Kanno K, Uchida A, Bunsen M 2016 Phys. Rev. E 93 032206
[37] Zhong Z Q, Wu Z M, Wu J G, Xia G Q 2013 IEEE Photon. J. 5 1500409
-
[1] Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343
[2] Li N Q, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Xiang S Y 2012 IEEE Photon. Technol. Lett. 24 1072
[3] Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619
[4] Zhong D Z, Deng T, Zheng G L 2014 Acta Phys. Sin. 63 70504 (in Chinese) [钟东洲, 邓涛, 郑国梁 2014 63 70504]
[5] Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991
[6] Oliver N, Soriano M C, Sukow D W, Fischer I 2013 IEEE J. Quantum Electron. 49 910
[7] Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Dovis P 2008 Nat. Photon. 2 728
[8] Sakuraba R, Iwakawa K, Kanno K, Uchida A 2015 Opt. Express 23 1470
[9] Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452
[10] Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Electron. 45 879
[11] Kong L Q, Wang A B, Wang H H, Wang Y C 2008 Acta Phys. Sin. 57 2266 (in Chinese) [孔令琴, 王安邦, 王海红, 王云才 2008 57 2266]
[12] Zhang L Y, Pan W, Yan L S, Luo B, Zou X H, Xiang S Y, Li N Q 2012 IEEE Photon. Technol. Lett. 24 1693
[13] Hwang S K, Liu J M 2000 Opt. Commun. 183 195
[14] Yan S L 2012 Acta Phys. Sin. 61 160505 (in Chinese) [颜森林 2012 61 160505]
[15] Lin F Y, Liu J M 2003 IEEE J. Quantum Electron. 39 562
[16] Zhang W L, Pan W, Luo B, Li X F, Zou X H, Wang M Y 2007 Appl. Opt. 46 7262
[17] Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102
[18] Guo Y Y, Wu Y, Wang Y C 2012 Chin. Opt. Lett. 10 061901
[19] Short K M, Parker A T 1998 Phys. Rev. E 58 1159
[20] Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960
[21] Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124
[22] Zhu X H, Cheng M F, Deng L, Jiang X X, Ke C J, Zhang M M, Fu S N, Tang M, Shum P, Liu D M 2017 IEEE Photon. J. 9 6601009
[23] Ke J X, Yi L L, Hou T T, Hu Y, Xia G Q, Hu W S 2017 IEEE Photon. J. 9 7200808
[24] Iga K 2000 IEEE J. Sel. Top. Quantum Electron. 6 1201
[25] Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Li N Q, Zhu H N 2012 IEEE Photon. Technol. Lett. 24 1267
[26] Zhang X X, Zhang S H, Wu T A, Sun W Y 2016 Acta Phys. Sin. 65 214206 (in Chinese) [张晓旭, 张胜海, 吴天安, 孙巍阳 2016 65 214206]
[27] Lin H, Hong Y H, Shore K A 2014 J. Lightwave Technol. 32 1829
[28] Yang X J, Chen J J, Xia G Q, Wu J G, Wu Z M 2015 Acta Phys. Sin. 64 224213 (in Chinese) [杨显杰, 陈建军, 夏光琼, 吴加贵, 吴正茂 2015 64 224213]
[29] San Miguel M, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728
[30] Martin-Regalado J, Prati F, San Miguel M, Abraham N B 1997 IEEE J. Quantum Electron. 33 765
[31] Xiao P, Wu Z M, Wu J G, Jiang L, Deng T, Tang X, Fan L, Xia G Q 2013 Opt. Commun. 286 339
[32] Liu H J, Li N Q, Zhao Q C 2015 Appl. Opt. 54 4380
[33] Sodermann M, Weinkath M, Ackemann T 2004 IEEE J. Quantum Electron. 40 97
[34] Elsonbaty A, Hegazy S F, Obayya S S A 2015 IEEE J. Quantum Electron. 51 2400309
[35] Lin F Y, Chao Y K, Wu T C 2012 IEEE J. Quantum Electron. 48 1010
[36] Kanno K, Uchida A, Bunsen M 2016 Phys. Rev. E 93 032206
[37] Zhong Z Q, Wu Z M, Wu J G, Xia G Q 2013 IEEE Photon. J. 5 1500409
计量
- 文章访问数: 6549
- PDF下载量: 182
- 被引次数: 0