-
We study the multi-transverse mode distributions and the wavelength splittings with different designed oxide apertures of the oxide-confined VCSEL. By developing the effective index model and BPM algorithm theory, the characteristics of transverse optical field distribution are calculated with circular aperture and ellipsoid aperture, which are compared with our experimental results of multi-wavelength spectra of high-order transverse modes. The results show that the orthogonality of the different crystal orientation modes will be broken by the oxidation-induced ellipsoid aperture, and the maximum wavelength spltting of the degenerated high-order mode is 0.037 nm, which can be reduced as the diameter of aperture increases. The results in this paper will provide a useful reference for multi-transverse mode locking of oxide-confined VCSELs.
-
Keywords:
- vertical cavity surface emitting lasers /
- oxide apertures /
- transverse mode /
- wavelength split
[1] Gordon R, Heberle A P, Cleaver J R A 2002 Appl. Phys. Lett. 81 4523
[2] Gadallah A S, Michalzik R 2011 IEEE Photon. Technol. Lett. 23 1040
[3] Li S, Guan B L, Shi G Z, Guo X 2012 Acta Phys. Sin. 61 184208 (in Chinese) [李硕, 关宝璐, 史国柱, 郭霞 2012 61 184208]
[4] Zhang B, Heberle A P 2007 Proc. of OSA 285 4117
[5] Song D S, Kim S H, Park H G, Kim C K, Lee Y H 2002 J. Appl. Phys. 80 3901
[6] Liu F, Xu C, Zhao Z B, Zhou K, Xie Y Y, Mao M M, Wei S M, Cao T, Shen G D 2012 Acta Phys. Sin. 61 054203 (in Chinese) [刘发, 徐晨, 赵振波, 周康, 解意洋, 毛明明, 魏思民, 曹田, 沈光地 2012 61 054203]
[7] Li M S, Zhang B T, Chen K P, Snoke D W, Heberle A P 2012 IEEE J. Quantum Electron. 48 8
[8] Zhang J, Yu J L, Cheng S Y, Lai Y F, Chen Y H 2014 Chin. Phys. B 23 027304
[9] Yang H, Guo X, Guan B L, Wang T X, Shen G D 2008 Acta Phys. Sin. 57 2959 (in Chinese) [杨浩, 郭霞, 关宝璐, 王同喜, 沈光地 2008 57 2959]
[10] Shi G Z, Guan B L, Li S, Wang Q, Shen G D 2013 Chin. Phys. B 22 1
[11] Cheng P, Gao J H, Kang X J, Lin S M, Zhang G B, Liu S A, Hu G X 2000 Chin. J. Semicond. 21 0253
[12] Debernardi P, Bava G P, Degen C, Fischer I, Elsäßer W, Member S 2002 IEEE J. Quantum Electron. 38 1
[13] Yariv A, Yeh P 1984 Optical Waves in Crystals (New York: Wiley) pp22-53
[14] Brunner M, Gulden K, Hövel R, Moser M, Ilegems M 2000 Appl. Phys. Lett. 76 7
-
[1] Gordon R, Heberle A P, Cleaver J R A 2002 Appl. Phys. Lett. 81 4523
[2] Gadallah A S, Michalzik R 2011 IEEE Photon. Technol. Lett. 23 1040
[3] Li S, Guan B L, Shi G Z, Guo X 2012 Acta Phys. Sin. 61 184208 (in Chinese) [李硕, 关宝璐, 史国柱, 郭霞 2012 61 184208]
[4] Zhang B, Heberle A P 2007 Proc. of OSA 285 4117
[5] Song D S, Kim S H, Park H G, Kim C K, Lee Y H 2002 J. Appl. Phys. 80 3901
[6] Liu F, Xu C, Zhao Z B, Zhou K, Xie Y Y, Mao M M, Wei S M, Cao T, Shen G D 2012 Acta Phys. Sin. 61 054203 (in Chinese) [刘发, 徐晨, 赵振波, 周康, 解意洋, 毛明明, 魏思民, 曹田, 沈光地 2012 61 054203]
[7] Li M S, Zhang B T, Chen K P, Snoke D W, Heberle A P 2012 IEEE J. Quantum Electron. 48 8
[8] Zhang J, Yu J L, Cheng S Y, Lai Y F, Chen Y H 2014 Chin. Phys. B 23 027304
[9] Yang H, Guo X, Guan B L, Wang T X, Shen G D 2008 Acta Phys. Sin. 57 2959 (in Chinese) [杨浩, 郭霞, 关宝璐, 王同喜, 沈光地 2008 57 2959]
[10] Shi G Z, Guan B L, Li S, Wang Q, Shen G D 2013 Chin. Phys. B 22 1
[11] Cheng P, Gao J H, Kang X J, Lin S M, Zhang G B, Liu S A, Hu G X 2000 Chin. J. Semicond. 21 0253
[12] Debernardi P, Bava G P, Degen C, Fischer I, Elsäßer W, Member S 2002 IEEE J. Quantum Electron. 38 1
[13] Yariv A, Yeh P 1984 Optical Waves in Crystals (New York: Wiley) pp22-53
[14] Brunner M, Gulden K, Hövel R, Moser M, Ilegems M 2000 Appl. Phys. Lett. 76 7
Catalog
Metrics
- Abstract views: 8238
- PDF Downloads: 357
- Cited By: 0