Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical calculation and discussion on return photons of polychromatic laser guide stars by a laser beam with 330 nm wavelength

Liu Xiang-Yuan Qian Xian-Mei Zhu Wen-Yue Liu Dan-Dan Fan Chuan-Yu Zhou Jun Yang Huan

Citation:

Numerical calculation and discussion on return photons of polychromatic laser guide stars by a laser beam with 330 nm wavelength

Liu Xiang-Yuan, Qian Xian-Mei, Zhu Wen-Yue, Liu Dan-Dan, Fan Chuan-Yu, Zhou Jun, Yang Huan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The properties of return photons of polychromatic laser guide stars excited by a modeless laser with 330 nm wavelength are investigated in this paper by numerical simulation. The repetition rate, linewidth, initial diameter of laser spot and atmospheric transmittance have great influences on the return photons at 330 nm and 2207 nm from polychromatic laser guide stars. First, the laser linewidth is optimized by solving the rate equations of interaction between laser and sodium atoms. We find that the 0.6 GHz linewidth for the continuous wave laser and the 1.0 GHz linewidth for the pulse laser are beneficial to obtaining the higher excited probability of sodium atoms. Based on the fitted relation between the excitation probability of sodium atoms and laser intensity, considering the random distributions of laser intensity at the mesosphere due to the influence of atmospheric turbulence, the return photons from polychromatic laser guide stars are numerically calculated. The results show that the return photons at 330 nm excited by the continuous-wave laser are more than those excited by the pulse laser. And the return photons excited by continuous-wave laser almost do not fluctuate when laser power arriving at sodium layer is 1 W. Furthermore, effects of the repetition rate of pulse laser and the laser initial diameter on the return photons at 330 nm are studied. The two results are obtained as follows. The first result is that the increment of return photons at 330 nm will converge to a constant value when the repetition rate of pulse laser is over 50 kHz. The second result is that the initial diameter of continuous wave laser has no effect on the return photons but the effect of pulse laser is more obvious. Particularly, the atmospheric transmittance is an important factor of influence because it causes a severe loss of light power at 330 nm wavelength. Under the conditions of 5 km atmospheric visibility and 12.8 cm atmospheric turbulence coherence length, the launched power of pulse laser with 50 ns duration should be more than 34 W for obtaining enough return photons required for the effective detection of atmospheric turbulence tip-tilt with the natural stars. But for the continuous-wave laser, the launched power should be more than 20 W. In the case of 10 km atmospheric visibility, if the same return photons at 330 nm are required, the launched power of pulse laser will also be more than that of the continuous-wave laser under the same conditions. Therefore, the continuous-wave laser has more advantages than the pulse laser in exciting the polychromatic laser guide stars. We hope that the above results will be beneficial to the further experimental research.
      Corresponding author: Qian Xian-Mei, qianxianmei@aiof.ac.cn
    • Funds: Project supported by the Open Fund of Key Laboratory of Atmospheric Optics in Chinese Academy of Sciences, China (Grant No. 2015JJ01) and the Key Projects of College Natural Foundation of Anhui Province and Anhui Provincial Department of Education, China (Grant Nos. KJ2017A401, KJ2016A749).
    [1]

    Olivier S S, Gavel D T 1994 J. Opt. Soc. Am.. 11 368

    [2]

    Foy R, Migus A, Biraben F, Grynberg G, McCullough P R, Tallon M 1995 Astrop. Astrophys. 111 569

    [3]

    Foy R, Tallon M, Tallon-Bosc I, Thibaut E, Vaillant J, Foy F C, Daniel R, Friedman H, Biraben F, Grynberg G, Gex J P, Mens A, Migus A, Weulersse J M, Butler D J 2000 J. Opt. Soc. Am.. 17 2236

    [4]

    Schck M, Foy R, Pique J P, Chevrou P, Ageorges N, Petit A D, Bellanger V, Fews H, Foy F C, Hoegemann C K, Laubscher M, Peillet O, Segonds P, Tallon M, Weulersse J M 2000 Proc. SPIE 4007 296

    [5]

    Pique J P, Moldovan I C, Fesquet V 2006 J. Opt. Soc. Am.. 23 2817

    [6]

    Chatellus H G, Pique J P, Moldovan I C 2008 J. Opt. Soc. Am.. 25 400

    [7]

    Milonni P W, Fugate R Q, Telle J M 1998 J. Opt. Soc. Am.. 15 218

    [8]

    Martin J M, Flatte S M 1988 Appl. Opt. 27 2111

    [9]

    Coles W A, Filice J P, Frehlich R G, Yadlowsky M 1995 Appl. Opt. 34 2089

    [10]

    Qian X M, Zhu W Y, Rao R Z 2012 Chin. Phys.. 21 094202

    [11]

    Shao W Y, Xian H 2016 Chin. Phys.. 11 114212

    [12]

    Orphala J, Chanceb K 2003 J. Quant. Spectrosc. Radiat. Transfer 82 491

    [13]

    Erlick C R, Frederick J E, Saxena V K, Wenny B N 1998 J. Geophys. Res. 103 541

    [14]

    Rao R Z 2012 Modern Atmospheric Optics. (Beijing: Science Press) p320 (in Chinese) [饶瑞中 2012 现代大气光学(北京: 科学出版社) 第320 页]

    [15]

    Moldovan I C 2008 Ph. D. Dissertation (Grenoble: Universit de Grenoble 1 Joseph Fourier) (in French)

    [16]

    Pique J P, Farinotti S 2003 J. Opt. Soc. Am.. 20 2093

    [17]

    Liu X Y, Qian X M, Li Y J, Rao R Z 2014 Chin. Phys.. 23 240

    [18]

    Sandler D G, Stahl S, Angel J R P, Lloyd-Hart M, McCarthy D 1994 J. Opt. Soc. Am.. 11 925

    [19]

    Hillman P D, Drummond J D, Denman C A, Fugate R Q 2008 Proc. SPIE 7015 70150L-1

    [20]

    Liu X Y, Qian X M, Zhang S M, Cui C L 2015 Acta Phys. Sin. 64 094206(in Chinese) [刘向远, 钱仙妹, 张穗萌, 崔朝龙 2015 64 094206]

    [21]

    Wizinovich P L, Mignant D L, Bouchez A H, Randy D C, Jason C Y C, Adam R C, Marcos A V D, Scott K H, Erik M J, Lafon R E, Lewis H, Stomski P J, Douglas M S 2006 Publ. Astron. Soc. Pac. 118 297

    [22]

    McLean I S, Adkins S 2004 Proc. SPIE 5492 1

  • [1]

    Olivier S S, Gavel D T 1994 J. Opt. Soc. Am.. 11 368

    [2]

    Foy R, Migus A, Biraben F, Grynberg G, McCullough P R, Tallon M 1995 Astrop. Astrophys. 111 569

    [3]

    Foy R, Tallon M, Tallon-Bosc I, Thibaut E, Vaillant J, Foy F C, Daniel R, Friedman H, Biraben F, Grynberg G, Gex J P, Mens A, Migus A, Weulersse J M, Butler D J 2000 J. Opt. Soc. Am.. 17 2236

    [4]

    Schck M, Foy R, Pique J P, Chevrou P, Ageorges N, Petit A D, Bellanger V, Fews H, Foy F C, Hoegemann C K, Laubscher M, Peillet O, Segonds P, Tallon M, Weulersse J M 2000 Proc. SPIE 4007 296

    [5]

    Pique J P, Moldovan I C, Fesquet V 2006 J. Opt. Soc. Am.. 23 2817

    [6]

    Chatellus H G, Pique J P, Moldovan I C 2008 J. Opt. Soc. Am.. 25 400

    [7]

    Milonni P W, Fugate R Q, Telle J M 1998 J. Opt. Soc. Am.. 15 218

    [8]

    Martin J M, Flatte S M 1988 Appl. Opt. 27 2111

    [9]

    Coles W A, Filice J P, Frehlich R G, Yadlowsky M 1995 Appl. Opt. 34 2089

    [10]

    Qian X M, Zhu W Y, Rao R Z 2012 Chin. Phys.. 21 094202

    [11]

    Shao W Y, Xian H 2016 Chin. Phys.. 11 114212

    [12]

    Orphala J, Chanceb K 2003 J. Quant. Spectrosc. Radiat. Transfer 82 491

    [13]

    Erlick C R, Frederick J E, Saxena V K, Wenny B N 1998 J. Geophys. Res. 103 541

    [14]

    Rao R Z 2012 Modern Atmospheric Optics. (Beijing: Science Press) p320 (in Chinese) [饶瑞中 2012 现代大气光学(北京: 科学出版社) 第320 页]

    [15]

    Moldovan I C 2008 Ph. D. Dissertation (Grenoble: Universit de Grenoble 1 Joseph Fourier) (in French)

    [16]

    Pique J P, Farinotti S 2003 J. Opt. Soc. Am.. 20 2093

    [17]

    Liu X Y, Qian X M, Li Y J, Rao R Z 2014 Chin. Phys.. 23 240

    [18]

    Sandler D G, Stahl S, Angel J R P, Lloyd-Hart M, McCarthy D 1994 J. Opt. Soc. Am.. 11 925

    [19]

    Hillman P D, Drummond J D, Denman C A, Fugate R Q 2008 Proc. SPIE 7015 70150L-1

    [20]

    Liu X Y, Qian X M, Zhang S M, Cui C L 2015 Acta Phys. Sin. 64 094206(in Chinese) [刘向远, 钱仙妹, 张穗萌, 崔朝龙 2015 64 094206]

    [21]

    Wizinovich P L, Mignant D L, Bouchez A H, Randy D C, Jason C Y C, Adam R C, Marcos A V D, Scott K H, Erik M J, Lafon R E, Lewis H, Stomski P J, Douglas M S 2006 Publ. Astron. Soc. Pac. 118 297

    [22]

    McLean I S, Adkins S 2004 Proc. SPIE 5492 1

  • [1] Chen Gao. Isolated attosecond pulse generation from helium atom irradiated by a three-color laser pulse. Acta Physica Sinica, 2022, 71(5): 054204. doi: 10.7498/aps.71.20211502
    [2] Zhang Wan-Ru, Chen Si-Yu, Su Rong-Tao, Jiang Man, Li Can, Ma Yan-Xing, Zhou Pu. Gain switched linearly polarized single-frequency pulsed fiber laser. Acta Physica Sinica, 2022, 71(19): 194204. doi: 10.7498/aps.71.20220829
    [3] Zhang Duo-Duo, Liu Xiao-Feng, Qiu Jian-Rong. Ultrafast optical switches and pulse lasers based on strong nonlinear optical response of plasmon nanostructures. Acta Physica Sinica, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [4] Chen Qian, Ma Ying-Qi, Chen Rui, Zhu Xiang, Li Yue, Han Jian-Wei. Characteristics of latch-up current of dose rate effect by laser simulation. Acta Physica Sinica, 2019, 68(12): 124202. doi: 10.7498/aps.68.20190237
    [5] Huang Min-Shuang, Ma Peng, Liu Xiao-Chen. Multi-pulse laser ranging method for pre-detection with high frequency resonance. Acta Physica Sinica, 2018, 67(7): 074202. doi: 10.7498/aps.67.20172079
    [6] Wang Gong-Chang, Wei Kai, Li Yan. Simulations of return flux of polychromatic laser guide stars based on Bloch equations. Acta Physica Sinica, 2018, 67(5): 054204. doi: 10.7498/aps.67.20171940
    [7] Yang Hong-Zhi, Zhao Chang-Ming, Zhang Hai-Yang, Yang Su-Hui, Li Chen. All-fiber radio frequency-modulated pulsed laser based on frequency-shift feedback loop. Acta Physica Sinica, 2017, 66(18): 184201. doi: 10.7498/aps.66.184201
    [8] Zhang Wei, Shi Zhen-Wu, Huo Da-Yun, Guo Xiao-Xiang, Peng Chang-Si. Effects of in-situ surface modification by pulsed laser on InAs/GaAs (001) quantum dot growth. Acta Physica Sinica, 2016, 65(11): 117801. doi: 10.7498/aps.65.117801
    [9] Zhao Xing, Mei Bo, Bi Jin-Shun, Zheng Zhong-Shan, Gao Lin-Chun, Zeng Chuan-Bin, Luo Jia-Jun, Yu Fang, Han Zheng-Sheng. Single event transients in a 0.18 m partially-depleted silicon-on-insulator complementary metal oxide semiconductor circuit. Acta Physica Sinica, 2015, 64(13): 136102. doi: 10.7498/aps.64.136102
    [10] Liu Xiang-Yuan, Qian Xian-Mei, Zhang Sui-Meng, Cui Chao-Long. Numerical calculation and discussion on the return photon number of sodium laser beacon excited by a macro-micro pulse laser. Acta Physica Sinica, 2015, 64(9): 094206. doi: 10.7498/aps.64.094206
    [11] Han Ge, Gong Wei, Ma Xin, Xiang Cheng-Zhi, Liang Ai-Lin, Zheng Yu-Xin. A ground-based differential absorption lidar for atmospheric vertical CO2 profiling. Acta Physica Sinica, 2015, 64(24): 244206. doi: 10.7498/aps.64.244206
    [12] Chen Rui, Yu Yong-Tao, Shangguan Shi-Peng, Feng Guo-Qiang, Han Jian-Wei. Mechanism of multiple bit upsets induced by localized latch-up effect in 90 nm complementary metal semiconductor static random-access memory. Acta Physica Sinica, 2014, 63(12): 128501. doi: 10.7498/aps.63.128501
    [13] Li Hong-Wei, Han Jian-Wei, Cai Ming-Hui, Wu Feng-Shi, Zhang Zhen-Long. Simulation of small space debris impact inducing discharge using laser-induced plasma method. Acta Physica Sinica, 2014, 63(11): 119601. doi: 10.7498/aps.63.119601
    [14] Su Rong-Tao, Zhou Pu, Wang Xiao-Lin, Ji Xiang, Xu Xiao-Jun. Influence of temporal error with different pulse shapes on coherent beam combination system. Acta Physica Sinica, 2012, 61(8): 084206. doi: 10.7498/aps.61.084206
    [15] Fu Guang-Sheng, Ding Xue-Cheng, Guo Rui-Qiang, Zhai Xiao-Lin, Chu Li-Zhi, Deng Ze-Chao, Liang Wei-Hua, Wang Ying-Long. The extended inertia fluid model to interpret the size distribution of Si nanoparticles prepared by pulsed laser ablation. Acta Physica Sinica, 2011, 60(1): 018102. doi: 10.7498/aps.60.018102
    [16] Peng Ya-Jing, Liu Yu-Qiang, Wang Ying-Hui, Zhang Shu-Ping, Yang Yan-Qiang. Thermal dynamic analysis of picosecond and nanosecond single pulse laser flash-heating of Al/NC nanoenergetic composites. Acta Physica Sinica, 2009, 58(1): 655-661. doi: 10.7498/aps.58.655
    [17] Qiao Feng, Huang Xin-Fan, Zhu Da, Ma Zhong-Yuan, Zou HeCheng, Sui Yan-Ping, Li Wei, Zhou Xiao-Hui, Chen Kun-Ji. NcSi/SiO2 multilayer prepared by the method of laser constrained crystallization. Acta Physica Sinica, 2004, 53(12): 4303-4307. doi: 10.7498/aps.53.4303
    [18] Zhang Duan-Ming, Hou Si-Pu, Guan Li, Zhong Zhi-Cheng, Li Zhi-Hua, Yang Feng-Xia, Zheng Ke-Yu. Target ablation characteristics during pulsed laser deposition of thin films. Acta Physica Sinica, 2004, 53(7): 2237-2243. doi: 10.7498/aps.53.2237
    [19] ZHANG DUAN-MING, LI ZHI-HUA, HUANG MING-TAO, ZHANG MEI-JUN, GUAN LI, ZOU MING-QING, ZHONG ZHI-CHENG. STUDY ON THE TWIN DYNAMIC INTERFACES OF BULK TARGET IRRIDIATED BY PULSED LASER . Acta Physica Sinica, 2001, 50(5): 914-920. doi: 10.7498/aps.50.914
    [20] LIU SHI-JIE, S. U. CAMPISANO. LASER PULSE ANNEALING ION-IMPLANTED GaAs. Acta Physica Sinica, 1988, 37(5): 842-846. doi: 10.7498/aps.37.842
Metrics
  • Abstract views:  6126
  • PDF Downloads:  169
  • Cited By: 0
Publishing process
  • Received Date:  07 May 2017
  • Accepted Date:  07 October 2017
  • Published Online:  05 January 2018

/

返回文章
返回
Baidu
map