搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地基CO2廓线探测差分吸收激光雷达

韩舸 龚威 马昕 相成志 梁艾琳 郑玉新

引用本文:
Citation:

地基CO2廓线探测差分吸收激光雷达

韩舸, 龚威, 马昕, 相成志, 梁艾琳, 郑玉新

A ground-based differential absorption lidar for atmospheric vertical CO2 profiling

Han Ge, Gong Wei, Ma Xin, Xiang Cheng-Zhi, Liang Ai-Lin, Zheng Yu-Xin
PDF
导出引用
  • 研制了一台利用气溶胶散射信号的CO2廓线探测差分吸收激光雷达. 系统利用染料激光器实现波长调制, 采用双光路气体吸收池, 结合Voigt拟合方法实现了脉冲红外激光的高精度定标. 针对输出激光带宽较宽的问题, 采取仿真实验评估了影响, 并设计了基于吸收池的订正因子获取方案. 进而, 开展了水平、垂直和连续观测实验, 通过与地面CO2分析仪测量值的对比, 证明了系统具备优越的精密性和精确性. 实验表明, 该样机能够俘获CO2浓度随高程和时间变化而产生的变化.
    A differential absorption lidar (CO2-VDIAL), which is designed for vertical CO2 profile retrieving by using aerosol-scattered signals, is demonstrated in this paper. To our knowledge, it is the first time that a dye laser has been utilized to realize the wavelength modulation for a CO2-DIAL/IPDA system. Such a design scheme greatly reduces both the threshold and the cost to develop a CO2-DIAL. However, two key problems emerge in this system, i.e., wavelength stability and broad bandwidth. By adopting the CO2-VDIAL, a dual-path gas cell, and the Voigt fitting procedure, the accurate wavelength calibration of infrared pulse laser is achieved. Experimental results show that the error of wavelength calibration can be suppressed under 0.1 pm. And a wavelength stability of ~2 pm is then achieved. For tackling the error introduced by using the laser of a broad bandwidth, simulated experiments are carried out to estimate its influence. On that basis, we propose a method to calculate the correction coefficient and demonstrate the process via experiments by using a gas cell. It is demonstrated that the bandwidth of the output infrared laser is around 600-700 MHz. Hence, the broad bandwidth correction is an indispensable step for this CO2-VDIAL. Finally, horizontal, vertical and continuous detections are carried out to verify the precision and the accuracy of our CO2-VDIAL. The slope method is used to retrieve the XCO2 in the above experiments. In the horizontal detections, an R2 of 0.999 is achieved, suggesting that the precision of the system is excellent. By comparison with the in-situ measurements, a difference is found to be lower than 4 ppm. Consequently, it is concluded that the CO2-VDIAL is capable of providing retrievals with the high precision and accuracy. Moreover, the XCO2 decreases with increasing altitude according to the vertical detection experiment in the midnight on June 19m th 2015 at an urban site, demonstrating that the CO2-VDIAL is capable of providing retrievals of ranged-resolved. Finally, temporal characteristic of XCO2 can be also revealed by the CO2-VDIAL in light of continuous detections. The CO2-VDIAL has already been assembled in a container which is due to be transported to Huainai for further verifications in late 2015. Once we finish the performance optimization, the CO2-VDIAL will be installed in Tibet for long period observation.
      通信作者: 龚威, weigongwhu@gmail.com
    • 基金项目: 国家自然科学(批准号: 41127901, 41201362)资助的课题.
      Corresponding author: Gong Wei, weigongwhu@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41127901, 41201362).
    [1]

    Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M 2013 IPCC: Climate Change: The Physical Science Basis

    [2]

    Bousquet P, Peylin P, Ciais P, Ramonet M, Monfray P 1999 J. Geophys. Res. 104 26161

    [3]

    Gurney K R, Law R M, Denning A S, Rayner P J, Baker D, Bousquet P, Bruhwiler L, Chen Y H, Ciais P, Fan S, Fung I Y, Gloor M, Heimann M, Higuchi K, John J, Maki T, Maksyutov S, Masarie K, Peylin P, Prather M, Pak B C, Randerson J, Sarmiento J, Taguchi S, Takahashi T, Yuen C W 2002 Nature 415 626

    [4]

    Stephens B B, Gurney K R, Tans P P, et al. 2007 Science 316 1732

    [5]

    Gatti L V, Miller J B, D'Amelio M T S, Martinewski A, Basso L S, Gloor M E, Wofsy S, Tans P 2010 Tellus B 62 581

    [6]

    Belmonte A 2004 Opt. Express 12 1249

    [7]

    Ehret G, Kiemle C, Wirth M, Amediek A, Fix A, Houweling S 2008 Appl. Phys. B: Lasers Opt. 90 593

    [8]

    Gibert F, Flamant P H, Bruneau D, Loth C 2006 Appl. Opt. 45 4448

    [9]

    Ismail S, Koch G, Abedin N, Refaat T, Rubio M, Davis K, Miller C, Vay S, Singh U 2006 NASA Earth Science Technology Conference USA, June 27-29, 2006

    [10]

    Amediek A, Fix A, Wirth M, Ehret G 2008 Appl. Phys. B: Lasers Opt. 92 295

    [11]

    Sakaizawa D, Nagasawa C, Nagai T, Abo M, Shibata Y, Nakazato M, Sakai T 2009 Appl. Opt. 48 748

    [12]

    Kameyama S, Imaki M, Hirano Y, Ueno S, Kawakami S, Sakaizawa D, Nakajima M 2009 Opt. Lett. 34 1513

    [13]

    Abshire J B, Riris H, Allan G R, Weaver C J, Mao J, Sun X, Hasselbrack W E, Kawa S R, Biraud S 2010 Tellus B 62 770

    [14]

    Liu H, Shu R, Hong G L, Zheng L, Ge Y, Hu Y H 2014 Acta Phys. Sin. 63 104214 (in Chinese) [刘豪, 舒嵘, 洪光烈, 郑龙, 葛烨, 胡以华 2014 63 104214]

    [15]

    Lu D R, Pan W L 2012 International Radiation Symposium Berlin, Germany, August 6-10, 2012 p244

    [16]

    Gong W, Han G, Ma X, Lin H 2013 Opt. Commun. 305 180

    [17]

    Rothman L S, Gordon I E, Babikov Y, Barbe A, Chris B D, Bernath P F, Birk M, Bizzocchi L, Boudon V, Brown L R, Campargue A,Chance K, Cohen E A, Coudert L H, Devi V M, Drouin B J, Fayt A, Flaud J M, Gamache R R, Harrison J J, Hartmann J M, Hill C, Hodges J T, Jacquemart D, Jolly A, Lamouroux J, Le R R J, Li G, Long D A, Lyulin O M, Mackie C J, Massie S T, Mikhailenko S, Mller H S P, Naumenko O V, Nikitin A V, Orphal J, Perevalov V, Perrin A, Polovtseva E R, Richard C, Smith M A H, Starikova E, Sung K, Tashkun S, Tennyson J, Toon G C, Tyuterev V L G, Wagner G 2013 J. Quant. Spectrosc. Ra. 130 4

    [18]

    Zhu X F, Lin Z X, Liu L M, Shao J Y, Gong W 2014 Acta Phys. Sin. 63 174203 (in Chinese) [朱湘飞, 林兆祥, 刘林美, 邵君宜, 龚威 2014 63 174203]

    [19]

    Han G, Gong W, Lin H, Ma X, Xiang C Z 2014 Appl. Phys. B: Lasers Opt. 117 1041

    [20]

    Ma X, Gong W, Ma Y Y, Fu D W, Han G, Xiang C Z 2015 Acta Phys. Sin. 64 154251 (in Chinese) [马昕, 龚威, 马盈盈, 傅东伟, 韩舸,相成志 2015 64 154251]

    [21]

    Han G, Gong W, Lin H, Ma X, Xiang C Z 2014 IEEE Trans. Geosci. Remote. 53 3221

  • [1]

    Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M 2013 IPCC: Climate Change: The Physical Science Basis

    [2]

    Bousquet P, Peylin P, Ciais P, Ramonet M, Monfray P 1999 J. Geophys. Res. 104 26161

    [3]

    Gurney K R, Law R M, Denning A S, Rayner P J, Baker D, Bousquet P, Bruhwiler L, Chen Y H, Ciais P, Fan S, Fung I Y, Gloor M, Heimann M, Higuchi K, John J, Maki T, Maksyutov S, Masarie K, Peylin P, Prather M, Pak B C, Randerson J, Sarmiento J, Taguchi S, Takahashi T, Yuen C W 2002 Nature 415 626

    [4]

    Stephens B B, Gurney K R, Tans P P, et al. 2007 Science 316 1732

    [5]

    Gatti L V, Miller J B, D'Amelio M T S, Martinewski A, Basso L S, Gloor M E, Wofsy S, Tans P 2010 Tellus B 62 581

    [6]

    Belmonte A 2004 Opt. Express 12 1249

    [7]

    Ehret G, Kiemle C, Wirth M, Amediek A, Fix A, Houweling S 2008 Appl. Phys. B: Lasers Opt. 90 593

    [8]

    Gibert F, Flamant P H, Bruneau D, Loth C 2006 Appl. Opt. 45 4448

    [9]

    Ismail S, Koch G, Abedin N, Refaat T, Rubio M, Davis K, Miller C, Vay S, Singh U 2006 NASA Earth Science Technology Conference USA, June 27-29, 2006

    [10]

    Amediek A, Fix A, Wirth M, Ehret G 2008 Appl. Phys. B: Lasers Opt. 92 295

    [11]

    Sakaizawa D, Nagasawa C, Nagai T, Abo M, Shibata Y, Nakazato M, Sakai T 2009 Appl. Opt. 48 748

    [12]

    Kameyama S, Imaki M, Hirano Y, Ueno S, Kawakami S, Sakaizawa D, Nakajima M 2009 Opt. Lett. 34 1513

    [13]

    Abshire J B, Riris H, Allan G R, Weaver C J, Mao J, Sun X, Hasselbrack W E, Kawa S R, Biraud S 2010 Tellus B 62 770

    [14]

    Liu H, Shu R, Hong G L, Zheng L, Ge Y, Hu Y H 2014 Acta Phys. Sin. 63 104214 (in Chinese) [刘豪, 舒嵘, 洪光烈, 郑龙, 葛烨, 胡以华 2014 63 104214]

    [15]

    Lu D R, Pan W L 2012 International Radiation Symposium Berlin, Germany, August 6-10, 2012 p244

    [16]

    Gong W, Han G, Ma X, Lin H 2013 Opt. Commun. 305 180

    [17]

    Rothman L S, Gordon I E, Babikov Y, Barbe A, Chris B D, Bernath P F, Birk M, Bizzocchi L, Boudon V, Brown L R, Campargue A,Chance K, Cohen E A, Coudert L H, Devi V M, Drouin B J, Fayt A, Flaud J M, Gamache R R, Harrison J J, Hartmann J M, Hill C, Hodges J T, Jacquemart D, Jolly A, Lamouroux J, Le R R J, Li G, Long D A, Lyulin O M, Mackie C J, Massie S T, Mikhailenko S, Mller H S P, Naumenko O V, Nikitin A V, Orphal J, Perevalov V, Perrin A, Polovtseva E R, Richard C, Smith M A H, Starikova E, Sung K, Tashkun S, Tennyson J, Toon G C, Tyuterev V L G, Wagner G 2013 J. Quant. Spectrosc. Ra. 130 4

    [18]

    Zhu X F, Lin Z X, Liu L M, Shao J Y, Gong W 2014 Acta Phys. Sin. 63 174203 (in Chinese) [朱湘飞, 林兆祥, 刘林美, 邵君宜, 龚威 2014 63 174203]

    [19]

    Han G, Gong W, Lin H, Ma X, Xiang C Z 2014 Appl. Phys. B: Lasers Opt. 117 1041

    [20]

    Ma X, Gong W, Ma Y Y, Fu D W, Han G, Xiang C Z 2015 Acta Phys. Sin. 64 154251 (in Chinese) [马昕, 龚威, 马盈盈, 傅东伟, 韩舸,相成志 2015 64 154251]

    [21]

    Han G, Gong W, Lin H, Ma X, Xiang C Z 2014 IEEE Trans. Geosci. Remote. 53 3221

  • [1] 张万儒, 陈思雨, 粟荣涛, 姜曼, 李灿, 马阎星, 周朴. 增益开关线偏振单频脉冲光纤激光器.  , 2022, 71(19): 194204. doi: 10.7498/aps.71.20220829
    [2] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器.  , 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [3] 陈钱, 马英起, 陈睿, 朱翔, 李悦, 韩建伟. 激光模拟瞬态剂量率闩锁效应电流特征机制研究.  , 2019, 68(12): 124202. doi: 10.7498/aps.68.20190237
    [4] 王倩, 毕研盟, 杨忠东. 气溶胶对大气CO2短波红外遥感探测影响的模拟分析.  , 2018, 67(3): 039202. doi: 10.7498/aps.67.20171993
    [5] 刘向远, 钱仙妹, 朱文越, 刘丹丹, 范传宇, 周军, 杨欢. 基于波长330 nm激光激发多色激光导星回波光子数的数值计算与探讨.  , 2018, 67(1): 014205. doi: 10.7498/aps.67.20171025
    [6] 杨宏志, 赵长明, 张海洋, 杨苏辉, 李晨. 基于频移反馈腔的全光纤射频调制脉冲激光研究.  , 2017, 66(18): 184201. doi: 10.7498/aps.66.184201
    [7] 张伟, 石震武, 霍大云, 郭小祥, 彭长四. 脉冲激光原位辐照对InAs/GaAs(001)量子点生长的影响.  , 2016, 65(11): 117801. doi: 10.7498/aps.65.117801
    [8] 李志彬, 马宏亮, 曹振松, 孙明国, 黄印博, 朱文越, 刘强. 2μm波段高灵敏度离轴积分腔装置实际大气CO2测量.  , 2016, 65(5): 053301. doi: 10.7498/aps.65.053301
    [9] 葛烨, 胡以华, 舒嵘, 洪光烈. 一种新型的用于差分吸收激光雷达中脉冲式光学参量振荡器的种子激光器的频率稳定方法.  , 2015, 64(2): 020702. doi: 10.7498/aps.64.020702
    [10] 马昕, 龚威, 马盈盈, 傅东伟, 韩舸, 相成志. 基于匹配算法的脉冲差分吸收CO2激光雷达的稳频研究.  , 2015, 64(15): 154215. doi: 10.7498/aps.64.154215
    [11] 李宏伟, 韩建伟, 蔡明辉, 吴逢时, 张振龙. 激光诱导等离子体模拟微小空间碎片撞击诱发放电研究.  , 2014, 63(11): 119601. doi: 10.7498/aps.63.119601
    [12] 葛烨, 舒嵘, 胡以华, 刘豪. 大气水汽探测地基差分吸收激光雷达系统设计与性能仿真.  , 2014, 63(20): 204301. doi: 10.7498/aps.63.204301
    [13] 刘豪, 舒嵘, 洪光烈, 郑龙, 葛烨, 胡以华. 连续波差分吸收激光雷达测量大气CO2.  , 2014, 63(10): 104214. doi: 10.7498/aps.63.104214
    [14] 粟荣涛, 周朴, 王小林, 冀翔, 许晓军. 不同波形脉冲激光的时域误差对相干合成的影响.  , 2012, 61(8): 084206. doi: 10.7498/aps.61.084206
    [15] 蒙大桥, 罗文华, 李赣, 陈虎翅. Pu(100)表面吸附CO2的密度泛函研究.  , 2009, 58(12): 8224-8229. doi: 10.7498/aps.58.8224
    [16] 彭亚晶, 刘玉强, 王英惠, 张淑平, 杨延强. 皮秒和纳秒单脉冲激光加热Al/NC复合纳米含能材料的热动力学分析.  , 2009, 58(1): 655-661. doi: 10.7498/aps.58.655
    [17] 洪光烈, 张寅超, 赵曰峰, 邵石生, 谭 锟, 胡欢陵. 探测大气中CO2的Raman激光雷达.  , 2006, 55(2): 983-987. doi: 10.7498/aps.55.983
    [18] 张端明, 侯思普, 关 丽, 钟志成, 李智华, 杨凤霞, 郑克玉. 脉冲激光制备薄膜材料的烧蚀机理.  , 2004, 53(7): 2237-2243. doi: 10.7498/aps.53.2237
    [19] 乔 峰, 黄信凡, 朱 达, 马忠元, 邹和成, 隋妍萍, 李 伟, 周晓辉, 陈坤基. 激光限制结晶技术制备nc-Si/SiO2多层膜.  , 2004, 53(12): 4303-4307. doi: 10.7498/aps.53.4303
    [20] 张端明, 李智华, 黄明涛, 张美军, 关丽, 邹明清, 钟志成. 脉冲激光烧蚀块状靶材的双动态界面研究.  , 2001, 50(5): 914-920. doi: 10.7498/aps.50.914
计量
  • 文章访问数:  7316
  • PDF下载量:  244
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-24
  • 修回日期:  2015-08-13
  • 刊出日期:  2015-12-05

/

返回文章
返回
Baidu
map