-
孤立阿秒脉冲因可以跟踪和控制原子及分子内电子的运动过程而备受关注. 本文从理论上开展了氦原子在3束飞秒脉冲激光组合场辐照下产生的高次谐波和阿秒脉冲辐射的研究. 组合激光场由 16 fs/1600 nm, 15 fs/1100 nm 和 5.3 fs/800 nm 的钛宝石脉冲构成. 与前两束脉冲合成的双色场产生谐波谱相比, 附加钛宝石脉冲的三色场产生的高次谐波发射谱呈现出高转换效率及宽带超连续特性, 超连续谱范围覆盖从 230—690 次谐波, 傅里叶变换后实现了128 as高强度孤立短脉冲的产生. 该结果归因于合成的三色场呈现出高功率及少周期的中红外飞秒脉冲激光特性, 可以有效控制原子电离以及复合发生在中红外飞秒脉冲的一个有效光学周期内.Isolated attosecond pulses enables the studying and controlling of ultrafast electron processes in atoms and molecules. High-order harmonic generation (HHG) is the most promising way to generate such pulses, benefiting from the broad plateau structure of the typical HHG spectrum. We theoretically investigate high-order harmonic and attosecond pulse generation from helium atom in a three-color laser field, which is synthesized by 16 fs/1600 nm, 15 fs/1100 nm and 5 fs/800 nm pulse laser. Compared with harmonic spectrum generated by a two-color laser field synthesized by 16 fs/1600 nm and 15 fs/1100 nm, the harmonic spectrum generated from the synthesized three-color field exhibits high conversion efficiency and broadband supercontinuum characteristics. The continuous spectrum range covers from 230th to 690th harmonics, and the generation of 128 attosecond isolated short pulses with higher intensity is realized after Fourier transform. This result is attributable to the fact that the synthesized three-color electric field exhibits high-intensity and few-cycle mid-infrared femtosecond pulse laser characteristics, which can effectively control atomic ionization and recombination occurring within an effective optical period of the mid-infrared femtosecond pulse. This scheme solves the problems faced by the current femtosecond pulse laser technology, i.e. the few-cycle mid-infrared femtosecond pulse laser cannot have both carrier envelope phase stability and high power output.
[1] Brabec T, Krausz F 2000 Rev. Mod. Phys. 72 545
Google Scholar
[2] Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163
Google Scholar
[3] Drescher M, Hentschel M, Kienberger R, Tempea G, Spielmann C, Reider G A, Corkum P B, Krausz F 2001 Science 291 1923
Google Scholar
[4] Krause J L, Schafer K J, Kulander K C 1992 Phys. Rev. Lett. 68 3535
Google Scholar
[5] Schafer K J, Yang B, DiMauro L F, Kulander K C 1993 Phys. Rev. Lett. 70 1599
Google Scholar
[6] Ferrari F, Calegari F, Lucchini M, Vozzi C, Stagira S, Sansone G, Nisoli M 2010 Nat. Photon. 4 875
Google Scholar
[7] Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614
Google Scholar
[8] Lan P, Lu P, Cao W, Li Y H, Wang X L 2007 Phys. Rev. A 76 21801
Google Scholar
[9] Corkum P B, Burnett N H, Ivanov M Y 1994 Opt. Lett. 19 1870
Google Scholar
[10] Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, Chini M, Chang Z 2017 Nat. Commun. 8 794
Google Scholar
[11] Wang X W, Wang L, Xiao F, Zhang D W, Lü Z H, Yuan J M, Zhao Z X 2020 Chin. Phys. Lett. 37 023201
Google Scholar
[12] Vincenti H, Quéré F 2012 Phys. Rev. Lett. 108 113904
Google Scholar
[13] Thomas P, Lukas G, Mark J, Daniel M, Stephen R 2006 Opt. Lett. 31 975
Google Scholar
[14] Hiroki M, Steve G, Li C Q, Sabih D K, Mahendra M S, Eric M, Chang Z H 2008 Phys. Rev. Lett. 100 103906
Google Scholar
[15] Li J, Ren X M, Yin Y C, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S Y, Wu Y, Chini M, Chang Z H 2017 Nat. Commun. 8 1
Google Scholar
[16] Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner H J 2017 Opt. Express. 25 27506
Google Scholar
[17] Shiner A D, Trallero-Herrero C, Kajumba N, Bandulet H C, Comtois D, Legare F, Giguere M, Kieffer J C, Corkum P B, Villeneuve D M 2009 Phys. Rev. Lett. 103 073902
Google Scholar
[18] Li M, Zhang G Z, Ding X, Yao J Q 2019 Chin. Phys. Lett. 36 063201
Google Scholar
[19] Shao J, Zhang C P, Jia J C, Ma J L, Miao X Y 2019 Chin. Phys. Lett. 36 054203
Google Scholar
[20] Zeng Z Z, Cheng Y, Song X H 2007 Phys. Rev. Lett. 98 203901
Google Scholar
[21] Lan P F, Lu P X, Gao W, Li Y, Wang X 2007 Phys. Rev. A 76 051801
Google Scholar
[22] Qin Y F, Guo F M, Li S Y, Yang Y J, Chen G 2014 Chin. Phys. B 23 093205
Google Scholar
[23] Li P C, Liu I L, Chu S I 2011 Opt. Express 19 23857
Google Scholar
[24] Keldysh L V 1964 Zh. Eksp. Teor. Fiz 47 1945
[25] Faisal F H M 1973 J. Phys. B 6 L89
Google Scholar
[26] Reiss H R 1980 Phys. Rev. A 22 1786
Google Scholar
[27] Lewenstein M, Salieres P, L’Huillier A 1995 Phys. Rev. A 52 4747
Google Scholar
[28] Ammosov M V, Delone N B, Krainov V 1986 Zh. Eksp. Teor. Fiz. 91 2008
-
图 1 三色脉冲电场随时间变化(黑色)、驱动场随时间变化(橘色)及控制场随时间变化(蓝色点线) (a)整个脉冲电场; (b)部分电场 –10—10 fs
Fig. 1. The change of three-color pulse electric field with time (black curve), the change of driving field with time (orange dot) and the change of controlling field with time (blue dot): (a) During the entire pulse duration; (b) part of the electric field ranges from –10 fs to 10 fs.
图 3 三色脉冲电场随时间变化(黑色)及双色脉冲电场随时间变化 (橘色点线) (a)整个脉冲电场; (b)部分电场 –10 —10 fs.
Fig. 3. The change of three-color pulse electric field with time (black curve) and the change of two-color pulse electric fieldwith time (orange dot): (a) During the entire pulse duration; (b) part of the electric field ranges from –10 fs to 10 fs.
图 4 (a)三色脉冲电场(黑色)及氦原子电离速率(蓝色填充区域)随时间变化曲线; (b)三色场情形下高次谐波随电子电离(黑色点线)和复合时刻(红色点线)的变化曲线
Fig. 4. (a) Variations of the three-color field (black curve) and the ionization rate of the helium atom (filled blue region) with time; (b) evolution of the harmonics with ionization (black) and recombination (red) time in the three-color field case.
-
[1] Brabec T, Krausz F 2000 Rev. Mod. Phys. 72 545
Google Scholar
[2] Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163
Google Scholar
[3] Drescher M, Hentschel M, Kienberger R, Tempea G, Spielmann C, Reider G A, Corkum P B, Krausz F 2001 Science 291 1923
Google Scholar
[4] Krause J L, Schafer K J, Kulander K C 1992 Phys. Rev. Lett. 68 3535
Google Scholar
[5] Schafer K J, Yang B, DiMauro L F, Kulander K C 1993 Phys. Rev. Lett. 70 1599
Google Scholar
[6] Ferrari F, Calegari F, Lucchini M, Vozzi C, Stagira S, Sansone G, Nisoli M 2010 Nat. Photon. 4 875
Google Scholar
[7] Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614
Google Scholar
[8] Lan P, Lu P, Cao W, Li Y H, Wang X L 2007 Phys. Rev. A 76 21801
Google Scholar
[9] Corkum P B, Burnett N H, Ivanov M Y 1994 Opt. Lett. 19 1870
Google Scholar
[10] Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, Chini M, Chang Z 2017 Nat. Commun. 8 794
Google Scholar
[11] Wang X W, Wang L, Xiao F, Zhang D W, Lü Z H, Yuan J M, Zhao Z X 2020 Chin. Phys. Lett. 37 023201
Google Scholar
[12] Vincenti H, Quéré F 2012 Phys. Rev. Lett. 108 113904
Google Scholar
[13] Thomas P, Lukas G, Mark J, Daniel M, Stephen R 2006 Opt. Lett. 31 975
Google Scholar
[14] Hiroki M, Steve G, Li C Q, Sabih D K, Mahendra M S, Eric M, Chang Z H 2008 Phys. Rev. Lett. 100 103906
Google Scholar
[15] Li J, Ren X M, Yin Y C, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S Y, Wu Y, Chini M, Chang Z H 2017 Nat. Commun. 8 1
Google Scholar
[16] Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner H J 2017 Opt. Express. 25 27506
Google Scholar
[17] Shiner A D, Trallero-Herrero C, Kajumba N, Bandulet H C, Comtois D, Legare F, Giguere M, Kieffer J C, Corkum P B, Villeneuve D M 2009 Phys. Rev. Lett. 103 073902
Google Scholar
[18] Li M, Zhang G Z, Ding X, Yao J Q 2019 Chin. Phys. Lett. 36 063201
Google Scholar
[19] Shao J, Zhang C P, Jia J C, Ma J L, Miao X Y 2019 Chin. Phys. Lett. 36 054203
Google Scholar
[20] Zeng Z Z, Cheng Y, Song X H 2007 Phys. Rev. Lett. 98 203901
Google Scholar
[21] Lan P F, Lu P X, Gao W, Li Y, Wang X 2007 Phys. Rev. A 76 051801
Google Scholar
[22] Qin Y F, Guo F M, Li S Y, Yang Y J, Chen G 2014 Chin. Phys. B 23 093205
Google Scholar
[23] Li P C, Liu I L, Chu S I 2011 Opt. Express 19 23857
Google Scholar
[24] Keldysh L V 1964 Zh. Eksp. Teor. Fiz 47 1945
[25] Faisal F H M 1973 J. Phys. B 6 L89
Google Scholar
[26] Reiss H R 1980 Phys. Rev. A 22 1786
Google Scholar
[27] Lewenstein M, Salieres P, L’Huillier A 1995 Phys. Rev. A 52 4747
Google Scholar
[28] Ammosov M V, Delone N B, Krainov V 1986 Zh. Eksp. Teor. Fiz. 91 2008
计量
- 文章访问数: 5125
- PDF下载量: 110
- 被引次数: 0