-
Isolated attosecond pulses enables the studying and controlling of ultrafast electron processes in atoms and molecules. High-order harmonic generation (HHG) is the most promising way to generate such pulses, benefiting from the broad plateau structure of the typical HHG spectrum. We theoretically investigate high-order harmonic and attosecond pulse generation from helium atom in a three-color laser field, which is synthesized by 16 fs/1600 nm, 15 fs/1100 nm and 5 fs/800 nm pulse laser. Compared with harmonic spectrum generated by a two-color laser field synthesized by 16 fs/1600 nm and 15 fs/1100 nm, the harmonic spectrum generated from the synthesized three-color field exhibits high conversion efficiency and broadband supercontinuum characteristics. The continuous spectrum range covers from 230th to 690th harmonics, and the generation of 128 attosecond isolated short pulses with higher intensity is realized after Fourier transform. This result is attributable to the fact that the synthesized three-color electric field exhibits high-intensity and few-cycle mid-infrared femtosecond pulse laser characteristics, which can effectively control atomic ionization and recombination occurring within an effective optical period of the mid-infrared femtosecond pulse. This scheme solves the problems faced by the current femtosecond pulse laser technology, i.e. the few-cycle mid-infrared femtosecond pulse laser cannot have both carrier envelope phase stability and high power output.
[1] Brabec T, Krausz F 2000 Rev. Mod. Phys. 72 545Google Scholar
[2] Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar
[3] Drescher M, Hentschel M, Kienberger R, Tempea G, Spielmann C, Reider G A, Corkum P B, Krausz F 2001 Science 291 1923Google Scholar
[4] Krause J L, Schafer K J, Kulander K C 1992 Phys. Rev. Lett. 68 3535Google Scholar
[5] Schafer K J, Yang B, DiMauro L F, Kulander K C 1993 Phys. Rev. Lett. 70 1599Google Scholar
[6] Ferrari F, Calegari F, Lucchini M, Vozzi C, Stagira S, Sansone G, Nisoli M 2010 Nat. Photon. 4 875Google Scholar
[7] Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614Google Scholar
[8] Lan P, Lu P, Cao W, Li Y H, Wang X L 2007 Phys. Rev. A 76 21801Google Scholar
[9] Corkum P B, Burnett N H, Ivanov M Y 1994 Opt. Lett. 19 1870Google Scholar
[10] Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, Chini M, Chang Z 2017 Nat. Commun. 8 794Google Scholar
[11] Wang X W, Wang L, Xiao F, Zhang D W, Lü Z H, Yuan J M, Zhao Z X 2020 Chin. Phys. Lett. 37 023201Google Scholar
[12] Vincenti H, Quéré F 2012 Phys. Rev. Lett. 108 113904Google Scholar
[13] Thomas P, Lukas G, Mark J, Daniel M, Stephen R 2006 Opt. Lett. 31 975Google Scholar
[14] Hiroki M, Steve G, Li C Q, Sabih D K, Mahendra M S, Eric M, Chang Z H 2008 Phys. Rev. Lett. 100 103906Google Scholar
[15] Li J, Ren X M, Yin Y C, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S Y, Wu Y, Chini M, Chang Z H 2017 Nat. Commun. 8 1Google Scholar
[16] Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner H J 2017 Opt. Express. 25 27506Google Scholar
[17] Shiner A D, Trallero-Herrero C, Kajumba N, Bandulet H C, Comtois D, Legare F, Giguere M, Kieffer J C, Corkum P B, Villeneuve D M 2009 Phys. Rev. Lett. 103 073902Google Scholar
[18] Li M, Zhang G Z, Ding X, Yao J Q 2019 Chin. Phys. Lett. 36 063201Google Scholar
[19] Shao J, Zhang C P, Jia J C, Ma J L, Miao X Y 2019 Chin. Phys. Lett. 36 054203Google Scholar
[20] Zeng Z Z, Cheng Y, Song X H 2007 Phys. Rev. Lett. 98 203901Google Scholar
[21] Lan P F, Lu P X, Gao W, Li Y, Wang X 2007 Phys. Rev. A 76 051801Google Scholar
[22] Qin Y F, Guo F M, Li S Y, Yang Y J, Chen G 2014 Chin. Phys. B 23 093205Google Scholar
[23] Li P C, Liu I L, Chu S I 2011 Opt. Express 19 23857Google Scholar
[24] Keldysh L V 1964 Zh. Eksp. Teor. Fiz 47 1945
[25] Faisal F H M 1973 J. Phys. B 6 L89Google Scholar
[26] Reiss H R 1980 Phys. Rev. A 22 1786Google Scholar
[27] Lewenstein M, Salieres P, L’Huillier A 1995 Phys. Rev. A 52 4747Google Scholar
[28] Ammosov M V, Delone N B, Krainov V 1986 Zh. Eksp. Teor. Fiz. 91 2008
-
图 1 三色脉冲电场随时间变化(黑色)、驱动场随时间变化(橘色)及控制场随时间变化(蓝色点线) (a)整个脉冲电场; (b)部分电场 –10—10 fs
Figure 1. The change of three-color pulse electric field with time (black curve), the change of driving field with time (orange dot) and the change of controlling field with time (blue dot): (a) During the entire pulse duration; (b) part of the electric field ranges from –10 fs to 10 fs.
图 3 三色脉冲电场随时间变化(黑色)及双色脉冲电场随时间变化 (橘色点线) (a)整个脉冲电场; (b)部分电场 –10 —10 fs.
Figure 3. The change of three-color pulse electric field with time (black curve) and the change of two-color pulse electric fieldwith time (orange dot): (a) During the entire pulse duration; (b) part of the electric field ranges from –10 fs to 10 fs.
图 4 (a)三色脉冲电场(黑色)及氦原子电离速率(蓝色填充区域)随时间变化曲线; (b)三色场情形下高次谐波随电子电离(黑色点线)和复合时刻(红色点线)的变化曲线
Figure 4. (a) Variations of the three-color field (black curve) and the ionization rate of the helium atom (filled blue region) with time; (b) evolution of the harmonics with ionization (black) and recombination (red) time in the three-color field case.
-
[1] Brabec T, Krausz F 2000 Rev. Mod. Phys. 72 545Google Scholar
[2] Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar
[3] Drescher M, Hentschel M, Kienberger R, Tempea G, Spielmann C, Reider G A, Corkum P B, Krausz F 2001 Science 291 1923Google Scholar
[4] Krause J L, Schafer K J, Kulander K C 1992 Phys. Rev. Lett. 68 3535Google Scholar
[5] Schafer K J, Yang B, DiMauro L F, Kulander K C 1993 Phys. Rev. Lett. 70 1599Google Scholar
[6] Ferrari F, Calegari F, Lucchini M, Vozzi C, Stagira S, Sansone G, Nisoli M 2010 Nat. Photon. 4 875Google Scholar
[7] Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614Google Scholar
[8] Lan P, Lu P, Cao W, Li Y H, Wang X L 2007 Phys. Rev. A 76 21801Google Scholar
[9] Corkum P B, Burnett N H, Ivanov M Y 1994 Opt. Lett. 19 1870Google Scholar
[10] Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, Chini M, Chang Z 2017 Nat. Commun. 8 794Google Scholar
[11] Wang X W, Wang L, Xiao F, Zhang D W, Lü Z H, Yuan J M, Zhao Z X 2020 Chin. Phys. Lett. 37 023201Google Scholar
[12] Vincenti H, Quéré F 2012 Phys. Rev. Lett. 108 113904Google Scholar
[13] Thomas P, Lukas G, Mark J, Daniel M, Stephen R 2006 Opt. Lett. 31 975Google Scholar
[14] Hiroki M, Steve G, Li C Q, Sabih D K, Mahendra M S, Eric M, Chang Z H 2008 Phys. Rev. Lett. 100 103906Google Scholar
[15] Li J, Ren X M, Yin Y C, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S Y, Wu Y, Chini M, Chang Z H 2017 Nat. Commun. 8 1Google Scholar
[16] Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner H J 2017 Opt. Express. 25 27506Google Scholar
[17] Shiner A D, Trallero-Herrero C, Kajumba N, Bandulet H C, Comtois D, Legare F, Giguere M, Kieffer J C, Corkum P B, Villeneuve D M 2009 Phys. Rev. Lett. 103 073902Google Scholar
[18] Li M, Zhang G Z, Ding X, Yao J Q 2019 Chin. Phys. Lett. 36 063201Google Scholar
[19] Shao J, Zhang C P, Jia J C, Ma J L, Miao X Y 2019 Chin. Phys. Lett. 36 054203Google Scholar
[20] Zeng Z Z, Cheng Y, Song X H 2007 Phys. Rev. Lett. 98 203901Google Scholar
[21] Lan P F, Lu P X, Gao W, Li Y, Wang X 2007 Phys. Rev. A 76 051801Google Scholar
[22] Qin Y F, Guo F M, Li S Y, Yang Y J, Chen G 2014 Chin. Phys. B 23 093205Google Scholar
[23] Li P C, Liu I L, Chu S I 2011 Opt. Express 19 23857Google Scholar
[24] Keldysh L V 1964 Zh. Eksp. Teor. Fiz 47 1945
[25] Faisal F H M 1973 J. Phys. B 6 L89Google Scholar
[26] Reiss H R 1980 Phys. Rev. A 22 1786Google Scholar
[27] Lewenstein M, Salieres P, L’Huillier A 1995 Phys. Rev. A 52 4747Google Scholar
[28] Ammosov M V, Delone N B, Krainov V 1986 Zh. Eksp. Teor. Fiz. 91 2008
Catalog
Metrics
- Abstract views: 4580
- PDF Downloads: 103
- Cited By: 0