Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and performance of spectroscopic filter of rotational Raman temperature lidar for absolute measurement

Li Qi-Meng Li Shi-Chun Qin Yu-Li Hu Xiang-Long Zhao Jing Song Yue-Hui Hua Deng-Xin

Citation:

Design and performance of spectroscopic filter of rotational Raman temperature lidar for absolute measurement

Li Qi-Meng, Li Shi-Chun, Qin Yu-Li, Hu Xiang-Long, Zhao Jing, Song Yue-Hui, Hua Deng-Xin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Rotational Raman temperature lidar for absolute measurement is an important method to directly detect the atmospheric temperature profile by using active remote sensing technology. Compared with the rotational Raman temperature relative measurement, the absolute measurement can avoid the systematic error caused by the calibration process, but its high-precision requirements of rotational Raman spectroscopic filter restrict the development of absolute measurement technique for atmosphere temperature. In order to achieve the absolute measurement technique of rotational Raman temperature lidar, the fine resolution of single rotational Raman line and the effective suppression 60-70 dB for the elastic scattering signal are the key factors for directly retrieving the atmospheric temperature by using the relationship between the single rotational Raman line and temperature. Based on the operational principle of grating, a two-stage parallel multi-channel Raman spectroscopic filter with one-order blazed grating and fiber Bragg grating is designed, and the parameters and optical path structure of the core cascade device (micron-level fiber array) are optimized. The optical path of the primary spectroscope is simulated, the wavelength difference between the rotational Raman lines of adjacent even rotational quantum numbers of nitrogen molecule (N2) gradually decreases from 0.4506 nm to 0.4475 nm. Compared with the average of approximately 0.4494 nm, its floating interval is -0.0012-+0.0019 nm, and the maximum centrifugal distortion of the rotational Raman spectra is approximately 0.0031 nm, which means that the centrifugal distortion ratio is 0.69%. Under the different values of incident angle , the diffraction position difference between adjacent rotational Raman lines varies from 124.43 m to 125.51 m, with a variation interval of -0.57-+0.51 m compared with a fixed value of 125 m. In order to test the matching consistency between rotational Raman spectra and the multi-channel fiber array, and to obtain the out-of-band suppression and channel coefficient of each fiber channel, an experimental system which consists of a first-order blazed grating, a convex lens and a fiber array is set up, and the atmospheric echo signal is simulated by using a broadband light-source and a semiconductor laser (LD). The experimental results show that the channel coefficient of the rotational Raman channels of the primary spectroscope is above 0.75, and the maximum deviation between the measured wavelength of extracted spectrum and the theoretical value is approximately 0.0398 nm, which means the the deviation degree is 8.86%. Each channel can provide more than 27 dB effective suppression to elastic scattering signal, and then by combining with the second spectroscope of fiber Bragg grating, the suppression at least is up to 62 dB. Therefore we can fine extract single rotational Raman line of even rotational quantum number.
      Corresponding author: Li Shi-Chun, lsczqz@xaut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61308106, 41627807).
    [1]

    Li Y J, Song S L, Li F Q, Cheng X W, Chen Z W, Liu L M, Yang Y, Gong S S 2015 Chin. J. Geophys. 58 313(in Chinese) [李亚娟, 宋沙磊, 李发泉, 程学武, 陈振威, 刘林美, 杨勇, 龚顺生 2015 地球 58 313]

    [2]

    Yang J, Liu Q Q, Dai W, Mao X L, Zhang J H, Li M 2016 Acta Phys. Sin. 65 094209(in Chinese) [杨杰, 刘清惓, 戴伟, 冒晓莉, 张加宏, 李敏 2016 65 094209]

    [3]

    Cooney J 1972 J. Apll. Meteorol. 11 108

    [4]

    Hua D X, Uchida M, Kobayashi T 2005 Appl. Opt. 44 1305

    [5]

    Shi J L, Guo P F, Huang Y, Qian J C, Wang H P, Liu J, He X D 2015 Acta Phys. Sin. 64 024215(in Chinese) [史久林, 郭鹏峰, 黄育, 钱佳成, 王泓鹏, 刘娟, 何兴道 2015 64 024215]

    [6]

    Hua D X, Song X Q 2008 Infrar. Laser Eng. 38 21(in Chinese) [华灯鑫, 宋小全 2008 红外与激光工程 38 21]

    [7]

    Li S C, Hua D X, Hu L L, Yan Q, Tian X Y 2014 Spectrosc. Lett. 47 244

    [8]

    Arshinov Y, Bobrovnikov S, Serikov I, Ansmann A, Wandinger U, Althausen D, Mattis I, Mller D 2005 Appl. Opt. 44 3593

    [9]

    Balin I, Serikov I, Bobrovnikov S, Simeonov V, Calpini B, Arshinov Y, van den Bergh H 2004 Appl. Phys.. 9 775

    [10]

    Chen S, Qiu Z, Zhang Y, Chen H, Wang Y 2011 J. Quant. Spectrosc. Radiat. 112 304

    [11]

    Su J, Zhang Y C, Zhao Y F, Liu Y L, Hong G L, Zhao P T, Qu K F, Xie J 2007 Chin. J. Lasers 34 94(in Chinese) [苏嘉, 张寅超, 赵曰峰, 刘玉丽, 洪光烈, 赵培涛, 屈凯峰, 谢军 2007 红外与激光工程 34 94]

    [12]

    Behrendt A, Nakamura T, Tsuda T 2004 Appl. Opt. 43 2930

    [13]

    Zeyn J, Lahmann W, Weitkamp C 1996 Opt. Lett. 21 1301

    [14]

    Li S C, Hua D X, Wang Y F, Gao F, Yan Q, Shi X J 2015 J. Quant. Spectrosc. Radiat.. 153 113

    [15]

    Mao J D, Hua D X, Huo L L, Wang Y F, Wang L 2010 Acta Optic. Sin. 30 8(in Chinese) [毛建东, 华灯鑫, 胡辽林, 王玉峰, 汪丽 2010 光学学报 30 8]

    [16]

    Radlach M, Behrendt A, Wulfmeyer V 2008 Atmos. Chem. Phys. 8 159

    [17]

    Li S C, Wang D L, Li Q M, Song Y H, Liu L J, Hua D X 2016 Acta Phys. Sin. 65 143301(in Chinese) [李仕春, 王大龙, 李启蒙, 宋跃辉, 刘丽娟, 华灯鑫 2016 65 143301]

    [18]

    Norton E G, Povey I M, South A M, Jones R L 2001 Proc. SPIE 4153 657

    [19]

    Li S C, Hua D X, Wang L L, Song Y H 2013 Optik 124 1450

    [20]

    Li S C, Hua D X, Song Y H, Tian X Y 2012 Acta Photon. Sin. 41 1053(in Chinese) [李仕春, 华灯鑫, 宋跃辉, 田小雨 2012 光子学报 41 1053]

    [21]

    Hoskins L C 1975 J. Chem. Educ. 52 568

  • [1]

    Li Y J, Song S L, Li F Q, Cheng X W, Chen Z W, Liu L M, Yang Y, Gong S S 2015 Chin. J. Geophys. 58 313(in Chinese) [李亚娟, 宋沙磊, 李发泉, 程学武, 陈振威, 刘林美, 杨勇, 龚顺生 2015 地球 58 313]

    [2]

    Yang J, Liu Q Q, Dai W, Mao X L, Zhang J H, Li M 2016 Acta Phys. Sin. 65 094209(in Chinese) [杨杰, 刘清惓, 戴伟, 冒晓莉, 张加宏, 李敏 2016 65 094209]

    [3]

    Cooney J 1972 J. Apll. Meteorol. 11 108

    [4]

    Hua D X, Uchida M, Kobayashi T 2005 Appl. Opt. 44 1305

    [5]

    Shi J L, Guo P F, Huang Y, Qian J C, Wang H P, Liu J, He X D 2015 Acta Phys. Sin. 64 024215(in Chinese) [史久林, 郭鹏峰, 黄育, 钱佳成, 王泓鹏, 刘娟, 何兴道 2015 64 024215]

    [6]

    Hua D X, Song X Q 2008 Infrar. Laser Eng. 38 21(in Chinese) [华灯鑫, 宋小全 2008 红外与激光工程 38 21]

    [7]

    Li S C, Hua D X, Hu L L, Yan Q, Tian X Y 2014 Spectrosc. Lett. 47 244

    [8]

    Arshinov Y, Bobrovnikov S, Serikov I, Ansmann A, Wandinger U, Althausen D, Mattis I, Mller D 2005 Appl. Opt. 44 3593

    [9]

    Balin I, Serikov I, Bobrovnikov S, Simeonov V, Calpini B, Arshinov Y, van den Bergh H 2004 Appl. Phys.. 9 775

    [10]

    Chen S, Qiu Z, Zhang Y, Chen H, Wang Y 2011 J. Quant. Spectrosc. Radiat. 112 304

    [11]

    Su J, Zhang Y C, Zhao Y F, Liu Y L, Hong G L, Zhao P T, Qu K F, Xie J 2007 Chin. J. Lasers 34 94(in Chinese) [苏嘉, 张寅超, 赵曰峰, 刘玉丽, 洪光烈, 赵培涛, 屈凯峰, 谢军 2007 红外与激光工程 34 94]

    [12]

    Behrendt A, Nakamura T, Tsuda T 2004 Appl. Opt. 43 2930

    [13]

    Zeyn J, Lahmann W, Weitkamp C 1996 Opt. Lett. 21 1301

    [14]

    Li S C, Hua D X, Wang Y F, Gao F, Yan Q, Shi X J 2015 J. Quant. Spectrosc. Radiat.. 153 113

    [15]

    Mao J D, Hua D X, Huo L L, Wang Y F, Wang L 2010 Acta Optic. Sin. 30 8(in Chinese) [毛建东, 华灯鑫, 胡辽林, 王玉峰, 汪丽 2010 光学学报 30 8]

    [16]

    Radlach M, Behrendt A, Wulfmeyer V 2008 Atmos. Chem. Phys. 8 159

    [17]

    Li S C, Wang D L, Li Q M, Song Y H, Liu L J, Hua D X 2016 Acta Phys. Sin. 65 143301(in Chinese) [李仕春, 王大龙, 李启蒙, 宋跃辉, 刘丽娟, 华灯鑫 2016 65 143301]

    [18]

    Norton E G, Povey I M, South A M, Jones R L 2001 Proc. SPIE 4153 657

    [19]

    Li S C, Hua D X, Wang L L, Song Y H 2013 Optik 124 1450

    [20]

    Li S C, Hua D X, Song Y H, Tian X Y 2012 Acta Photon. Sin. 41 1053(in Chinese) [李仕春, 华灯鑫, 宋跃辉, 田小雨 2012 光子学报 41 1053]

    [21]

    Hoskins L C 1975 J. Chem. Educ. 52 568

  • [1] Song Meng-Ting, Zhang Yue, Huang Wen-Juan, Hou Hua-Yi, Chen Xiang-Bai. Enhancement of two-magnon scattering in annealed nickel oxide studied by Raman spectroscopy. Acta Physica Sinica, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [2] Jiang Xiao-Wei, Wu Hua, Yuan Shou-Cai. Enhancement of graphene three-channel optical absorption based on metal grating. Acta Physica Sinica, 2019, 68(13): 138101. doi: 10.7498/aps.68.20182173
    [3] Liu Hou-Tong, Mao Min-Juan. An accurate inversion method of aerosol extinction coefficient about ground-based lidar without needing calibration. Acta Physica Sinica, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [4] Wang Yu-Feng, Zhang Jing, Tang Liu, Wang Qing, Gao Tian-Le, Song Yue-Hui, Di Hui-Ge, Li Bo, Hua Deng-Xin. Design and simulation analysis of spectroscopic system for synchronous atmospheric three-phase water detection based on Raman lidar. Acta Physica Sinica, 2018, 67(22): 224205. doi: 10.7498/aps.67.20180644
    [5] Gao Fei, Nan Heng-Shuai, Huang Bo, Wang Li, Li Shi-Chun, Wang Yu-Feng, Liu Jing-Jing, Yan Qing, Song Yue-Hui, Hua Deng-Xin. Technical realization and system simulation of ultraviolet multi-mode high-spectral-resolution lidar for measuring atmospheric aerosols. Acta Physica Sinica, 2018, 67(3): 030701. doi: 10.7498/aps.67.20172036
    [6] Li Yin-Hai, Xu Zhao-Huai, Wang Shuang, Xu Li-Xin, Zhou Zhi-Yuan, Shi Bao-Sen. Hong-Ou-Mandel interference between two independent all-fiber multiplexed photon sources. Acta Physica Sinica, 2017, 66(12): 120302. doi: 10.7498/aps.66.120302
    [7] Di Hui-Ge, Hua Hang-Bo, Zhang Jia-Qi, Zhang Zhan-Fei, Hua Deng-Xin, Gao Fei, Wang Li, Xin Wen-Hui, Zhao Heng. Design and analysis of high-spectral resolution lidar discriminator. Acta Physica Sinica, 2017, 66(18): 184202. doi: 10.7498/aps.66.184202
    [8] Li Shi-Chun, Wang Da-Long, Li Qi-Meng, Song Yue-Hui, Liu Li-Juan, Hua Deng-Xin. Pure rotational Raman lidar for absolute detection of atmospheric temperature. Acta Physica Sinica, 2016, 65(14): 143301. doi: 10.7498/aps.65.143301
    [9] Gong Xin, Hua Deng-Xin, Li Shi-Chun, Wang Jun, Shi Xiao-Jing. Design and optimization of all-fiber rotational Raman spectroscope for temperature measurement based on sampled fiber Bragg grating. Acta Physica Sinica, 2016, 65(7): 073601. doi: 10.7498/aps.65.073601
    [10] Ge Ye, Hu Yi-Hua, Shu Rong, Hong Guang-Lie. A novel frequency stabilization method for the seed laser of the pulse optical parametric oscillator in differential absorption lidar. Acta Physica Sinica, 2015, 64(2): 020702. doi: 10.7498/aps.64.020702
    [11] Zhao Hu, Hua Deng-Xin, Mao Jian-Dong, Zhou Chun-Yan. Correction to near-range multiwavelength lidar optical parameter based on the measurements of particle size distribution. Acta Physica Sinica, 2015, 64(12): 124208. doi: 10.7498/aps.64.124208
    [12] Qu Pu-Bo, Guan Xiao-Wei, Zhang Zhen-Rong, Wang Sheng, Li Guo-Hua, Ye Jing-Feng, Hu Zhi-Yun. Laser induced thermal grating spectroscopy thermometry technique. Acta Physica Sinica, 2015, 64(12): 123301. doi: 10.7498/aps.64.123301
    [13] Ren Xiu-Yun, Tian Zhao-Shuo, Sun Lan-Jun, Fu Shi-You. Effects of laser wavelength on both water temperature measurement precision and detection depth of Raman scattering lidar system. Acta Physica Sinica, 2014, 63(16): 164209. doi: 10.7498/aps.63.164209
    [14] Di Hui-Ge, Hou Xiao-Long, Zhao Hu, Yan Lei-Jie, Wei Xin, Zhao Huan, Hua Deng-Xin. Detections and analyses of aerosol optical properties under different weather conditions using multi-wavelength Mie lidar. Acta Physica Sinica, 2014, 63(24): 244206. doi: 10.7498/aps.63.244206
    [15] Geng Chao, Tan Yi, Mu Jin-Bo, Li Xin-Yang. Experimental research of tip/tilt control of a multi-channel fiber-laser array. Acta Physica Sinica, 2013, 62(2): 024206. doi: 10.7498/aps.62.024206
    [16] Wang Hong-Wei, Hua Deng-Xin, Wang Yu-Feng, Gao Peng, Zhao Hu. Design and analysis of new spectroscopic system of Raman lidar for detection of atmospheric water vapor. Acta Physica Sinica, 2013, 62(12): 120701. doi: 10.7498/aps.62.120701
    [17] Wang Shao-Lin, Su Jia, Zhao Pei-Tao, Cao Kai-Fa, Hu Shun-Xing, Wei He-Li, Tan Kun, Hu Huan-Ling. A pure rotational Raman-lidar based on three-stage Fabry-Perot etalons for monitoring atmospheric temperature. Acta Physica Sinica, 2008, 57(6): 3941-3947. doi: 10.7498/aps.57.3941
    [18] Hong Guang-Lie, Zhang Yin-Chao, Zhao Yue-Feng, Shao Shi-Sheng, Tan Kun, Hu Huan-Ling. Raman lidar for profiling atmospheric CO2. Acta Physica Sinica, 2006, 55(2): 983-987. doi: 10.7498/aps.55.983
    [19] Sun Dun-Lu, Qiu Huai-Li, Hang Yin, Zhang Lian-Han, Zhu Shi-Ning, Wang Ai-Hua, Yin Shao-Tang. Study on laser-micro-Raman spectra in near-stoichiometric LiNbO3 crystals. Acta Physica Sinica, 2004, 53(7): 2270-2274. doi: 10.7498/aps.53.2270
    [20] Pu Xiao-Yun, Yang Zheng, Jiang Nan, Chen Yong-Kang, Dai Hong. Observation of stimulated Raman scattering of weak-gain Raman modes by means of lasing gain. Acta Physica Sinica, 2003, 52(10): 2443-2448. doi: 10.7498/aps.52.2443
Metrics
  • Abstract views:  6751
  • PDF Downloads:  169
  • Cited By: 0
Publishing process
  • Received Date:  14 August 2017
  • Accepted Date:  07 October 2017
  • Published Online:  05 January 2018

/

返回文章
返回
Baidu
map