Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Detection of stable isotopic ratio of atmospheric CO2 based on Fourier transform infrared spectroscopy

Shan Chang-Gong Wang Wei Liu Cheng Xu Xing-Wei Sun You-Wen Tian Yuan Liu Wen-Qing

Citation:

Detection of stable isotopic ratio of atmospheric CO2 based on Fourier transform infrared spectroscopy

Shan Chang-Gong, Wang Wei, Liu Cheng, Xu Xing-Wei, Sun You-Wen, Tian Yuan, Liu Wen-Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Long-term measurement of CO2 and its stable isotopes not only obtain the CO2 sources and sink information, but also determine the contributions of different emission sources to atmospheric CO2.Fourier transform infrared spectroscopy (FTIR) is an important technique which can provide highly precise remote sensing of column abundances of atmospheric trace gases.In the study,the stable isotopes of atmospheric CO2,13CO2 and 12CO2,are retrieved from the near-infrared solar absorption spectra collected by a ground-based high-resolution Fourier transform spectrometer. Three spectral windows of 13CO2 and two spectral windows of 12CO2 are chosen to retrieve the two species.The root mean square spectral fitting residuals are about 1.2%,2.3% and 1.2% for the three spectral windows of 13CO2,and about 0.64% and 0.60% for the two spectral windows of 12CO2,respectively.The small spectral fitting residuals indicate the high-quality spectral fitting.The mean retrieval errors are (1.180.27)% and (0.890.25)% for 13CO2 and 12CO2 during the experiment,respectively.The measurement precision of carbon isotopic ratio 13C for the observation system is estimated to be about 0.041 based on the Allan variance method,comparable to the precision of in situ FTIR measurement.Moreover,long time series of atmospheric 13C in one year from September 18,2015 to September 24,2016 is obtained.The results show that atmospheric 13C varies from -7.58 to -11.66,and the mean value is about (-9.50.57) over the duration of the experiment.Also,time series of carbon isotopic signature 13C has an obvious seasonal trend,with a minimum of (-9.350.47) in winter and a maximum of (-8.730.39) in summer. The further analysis suggests that the increase of emission from the fossil fuel burning due to heating may explain the depletion of heavy isotope 13CO2 in winter.Additionally,it is revealed that the variation range of atmospheric 13C observed in Hefei area is consistent with the reported values in Nanjing area based on in situ measurement,while 13C values in summer and winter are higher than the corresponding values detected in Beijing area as indicated in recent publications,which may result from the fact that the CO2 emissions from the fossil fuel combustion in Beijing are more than those in Hefei.The experimental results demonstrate the ability of the ground-based high-resolution FTIR to detect the stable isotopes of atmospheric CO2,13CO2 and 12CO2,and carbon isotopic ratio 13C with a high precision and accuracy.
      Corresponding author: Wang Wei, wwang@aiofm.ac.cn;chliu81@ustc.edu.cn ; Liu Cheng, wwang@aiofm.ac.cn;chliu81@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41405134, 41775025, 41575021, 91544212, 41605018), the Natural Science Foundation of Anhui Province, China (Grant No. 1608085MD79) and the National Key Technology RD Program of China (Grant No. 2016YFC0200800).
    [1]

    Intergovernmental Panel on Climate Change (IPCC) 2014 Climate Change 2014: the Physical Science Basis (Geneva: IPCC Secretariat) p2

    [2]

    Gorka M, Lewicka S D 2013 Appl. Geochem. 35 7

    [3]

    Wada R, Pearce J K, Nakayama T, Matsumi Y, Hiyama T, Inoue G, Shibata T 2011 Atmos. Environ. 45 1168

    [4]

    Pataki D E, Bowling D R, Ehleringer J R 2003 J. Geophys. Res. Atoms. 08 1

    [5]

    Takahashi H A, Konohira E, Hiyama T, Minami M, Nakamura T, Yoshida N 2002 Tellus B 54 97

    [6]

    Xu J, Lee X, Xiao W, Cao C, Liu S, Wen X, Xu J, Zhang Z, Zhao J 2016 Atmos. Chem. Phys. 16 3385

    [7]

    Werner R A, Brand W A 2001 Rapid Commun. Mass Spectrom. 15 501

    [8]

    Li X X, Gao M G, Xu L, Tong J J, Wei X L, Feng M C, Jin L, Wang Y P, Shi J G 2013 Acta Phys. Sin. 62 030202 (in Chinese) [李相贤, 高闽光, 徐亮, 童晶晶, 魏秀丽, 冯明春, 金岭, 王亚萍, 石建国 2013 62 030202]

    [9]

    Sturm P, Leuenberger M, Valentino F L, Lehmann B, Ihly B 2006 Atmos. Chem. Phys. 6 1991

    [10]

    Liu W, Wei N N, Wang G H, Yao J, Zeng Y S, Fan X B, Geng Y H, Li Y (in Chinese) [刘卫, 卫楠楠, 王广华, 姚剑, 曾友石, 范雪波, 耿彦红, 李燕 2012 环境科学 33 1041]

    [11]

    Sturm P, Tuzson B, Henne S, Emmenegger L 2013 Atmos. Meas. Tech. 6 1659

    [12]

    Chen J M, Mo G, Deng F Moore J, Jacobson A D 2015 Elem. Sci. Anth. 3 52

    [13]

    Moore J, Jacobson A D 2015 Elem. Sci. Anth. 3 52

    [14]

    Deutscher N M, Sherlock V, Mikaloff F S E, Griffith D W T, Notholt J, Macatangay R, Connor B J, Robinson J, Shiona H, Velazco V A, Wang Y, Wennberg P O, Wunch D 2014 Atmos. Chem. Phys. 14 9883

    [15]

    Rokotyan N V, Zakharov V I, Gribanov K G, Schneider M, Bron F M, Jouzel J, Imasu R, Werner M, Butzin M, Petri C, Warneke T, Notholt J 2014 Atmos. Meas. Tech. 7 2567

    [16]

    Boesch H, Deutscher N M, Warneke T, Byckling K, Cogan A J, Griffith D W T, Notholt J, Parker R J, Wang Z 2013 Atmos. Meas. Tech. 6 599

    [17]

    Wunch D, Toon G C, Blavier J F L, Washenfelder R A, Notholt J, Connor B 2011 Philosoph. Trans. Royal Soc. London A: Math. Phys. Engineer. Sci. 369 2087

    [18]

    Reuter M, Bovensmann H, Buchwitz M, Burrows J P, Deutscher N M, Heymann J, Rozanov A, Schneising O, Suto H, Toon G C, Warneke T 2012 J. Quantit. Spectrosc. Radiat. Trans. 113 2009

    [19]

    Wang W, Tian Y, Liu C, Sun Y W, Liu W Q, Xie P H, Liu J G, Xu J, Morino I, Velazco V A, Griffith D W T, Notholt J, Warneke T Keppel-Aleks G, Wennberg P O, Schneider T 2011 Atmos. Chem. Phys. 11 3581

    [20]

    Wunch D, Toon G C, Sherlock V, Deutscher N M, Liu X, Feist D G, Wennberg P O 2015 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

    [21]

    Keppel-Aleks G, Wennberg P O, Schneider T 2011 Atmos. Chem. Phys. 11 3581

    [22]

    Hase1 F, Drouin B J, Roehl C M, Toon G C, Wennberg P O, Wunch D, Blumenstock T, Desmet F, Feist D G, Heikkinen P, de Mazire M, Rettinger M, Robinson J, Schneider M, Sherlock V, Sussmann R, T Y, Warneke T, Weinzier C 2013 Atmos. Meas. Tech. 6 3527

    [23]

    Hase F 2012 Atmos. Meas. Tech. 5 603

    [24]

    Washenfelder R A, Toon G C, Blavier J F, Yang Z, Allen N T, Wennberg P O, Vay S A, Matross D M, Daube B C Werle P, Mcke R, Slemr F Griffith D W T, Deutscher N M, Caldow C, Kettlewell G, Riggenbach M, Hammer S 2012 Atmos. Meas. Tech. 5 2481

    [25]

    Werle P, Mcke R, Slemr F 1993 Appl. Phys. B 57 131

    [26]

    Griffith D W T, Deutscher N M, Caldow C, Kettlewell G, Riggenbach M, Hammer S 2012 Atmos. Meas. Tech. 5 2481

    [27]

    Buschmann M, Deutscher N M, Sherlock V, Palm M, Warneke T, Notholt J 2016 Atmos. Meas. Tech. 9 577

    [28]

    Cambaliza M O L 2010 Ph. D. Dissertation (Pullman: Washington State University)

    [29]

    Pang J, Wen X, Sun X 2016 Sci. Total Environ. 539 322

  • [1]

    Intergovernmental Panel on Climate Change (IPCC) 2014 Climate Change 2014: the Physical Science Basis (Geneva: IPCC Secretariat) p2

    [2]

    Gorka M, Lewicka S D 2013 Appl. Geochem. 35 7

    [3]

    Wada R, Pearce J K, Nakayama T, Matsumi Y, Hiyama T, Inoue G, Shibata T 2011 Atmos. Environ. 45 1168

    [4]

    Pataki D E, Bowling D R, Ehleringer J R 2003 J. Geophys. Res. Atoms. 08 1

    [5]

    Takahashi H A, Konohira E, Hiyama T, Minami M, Nakamura T, Yoshida N 2002 Tellus B 54 97

    [6]

    Xu J, Lee X, Xiao W, Cao C, Liu S, Wen X, Xu J, Zhang Z, Zhao J 2016 Atmos. Chem. Phys. 16 3385

    [7]

    Werner R A, Brand W A 2001 Rapid Commun. Mass Spectrom. 15 501

    [8]

    Li X X, Gao M G, Xu L, Tong J J, Wei X L, Feng M C, Jin L, Wang Y P, Shi J G 2013 Acta Phys. Sin. 62 030202 (in Chinese) [李相贤, 高闽光, 徐亮, 童晶晶, 魏秀丽, 冯明春, 金岭, 王亚萍, 石建国 2013 62 030202]

    [9]

    Sturm P, Leuenberger M, Valentino F L, Lehmann B, Ihly B 2006 Atmos. Chem. Phys. 6 1991

    [10]

    Liu W, Wei N N, Wang G H, Yao J, Zeng Y S, Fan X B, Geng Y H, Li Y (in Chinese) [刘卫, 卫楠楠, 王广华, 姚剑, 曾友石, 范雪波, 耿彦红, 李燕 2012 环境科学 33 1041]

    [11]

    Sturm P, Tuzson B, Henne S, Emmenegger L 2013 Atmos. Meas. Tech. 6 1659

    [12]

    Chen J M, Mo G, Deng F Moore J, Jacobson A D 2015 Elem. Sci. Anth. 3 52

    [13]

    Moore J, Jacobson A D 2015 Elem. Sci. Anth. 3 52

    [14]

    Deutscher N M, Sherlock V, Mikaloff F S E, Griffith D W T, Notholt J, Macatangay R, Connor B J, Robinson J, Shiona H, Velazco V A, Wang Y, Wennberg P O, Wunch D 2014 Atmos. Chem. Phys. 14 9883

    [15]

    Rokotyan N V, Zakharov V I, Gribanov K G, Schneider M, Bron F M, Jouzel J, Imasu R, Werner M, Butzin M, Petri C, Warneke T, Notholt J 2014 Atmos. Meas. Tech. 7 2567

    [16]

    Boesch H, Deutscher N M, Warneke T, Byckling K, Cogan A J, Griffith D W T, Notholt J, Parker R J, Wang Z 2013 Atmos. Meas. Tech. 6 599

    [17]

    Wunch D, Toon G C, Blavier J F L, Washenfelder R A, Notholt J, Connor B 2011 Philosoph. Trans. Royal Soc. London A: Math. Phys. Engineer. Sci. 369 2087

    [18]

    Reuter M, Bovensmann H, Buchwitz M, Burrows J P, Deutscher N M, Heymann J, Rozanov A, Schneising O, Suto H, Toon G C, Warneke T 2012 J. Quantit. Spectrosc. Radiat. Trans. 113 2009

    [19]

    Wang W, Tian Y, Liu C, Sun Y W, Liu W Q, Xie P H, Liu J G, Xu J, Morino I, Velazco V A, Griffith D W T, Notholt J, Warneke T Keppel-Aleks G, Wennberg P O, Schneider T 2011 Atmos. Chem. Phys. 11 3581

    [20]

    Wunch D, Toon G C, Sherlock V, Deutscher N M, Liu X, Feist D G, Wennberg P O 2015 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

    [21]

    Keppel-Aleks G, Wennberg P O, Schneider T 2011 Atmos. Chem. Phys. 11 3581

    [22]

    Hase1 F, Drouin B J, Roehl C M, Toon G C, Wennberg P O, Wunch D, Blumenstock T, Desmet F, Feist D G, Heikkinen P, de Mazire M, Rettinger M, Robinson J, Schneider M, Sherlock V, Sussmann R, T Y, Warneke T, Weinzier C 2013 Atmos. Meas. Tech. 6 3527

    [23]

    Hase F 2012 Atmos. Meas. Tech. 5 603

    [24]

    Washenfelder R A, Toon G C, Blavier J F, Yang Z, Allen N T, Wennberg P O, Vay S A, Matross D M, Daube B C Werle P, Mcke R, Slemr F Griffith D W T, Deutscher N M, Caldow C, Kettlewell G, Riggenbach M, Hammer S 2012 Atmos. Meas. Tech. 5 2481

    [25]

    Werle P, Mcke R, Slemr F 1993 Appl. Phys. B 57 131

    [26]

    Griffith D W T, Deutscher N M, Caldow C, Kettlewell G, Riggenbach M, Hammer S 2012 Atmos. Meas. Tech. 5 2481

    [27]

    Buschmann M, Deutscher N M, Sherlock V, Palm M, Warneke T, Notholt J 2016 Atmos. Meas. Tech. 9 577

    [28]

    Cambaliza M O L 2010 Ph. D. Dissertation (Pullman: Washington State University)

    [29]

    Pang J, Wen X, Sun X 2016 Sci. Total Environ. 539 322

  • [1] Cheng Liang-Yuan, Xu Jin-Liang. Effect of flow direction on heat transfer and flow characteristics of supercritical carbon dioxide. Acta Physica Sinica, 2024, 73(2): 024401. doi: 10.7498/aps.73.20231142
    [2] Wang Song, Zhou Chuang, Li Su-Wen, Mou Fu-Sheng. Method of measuring atmospheric CO2 based on Fabry-Perot interferometer. Acta Physica Sinica, 2024, 73(2): 020702. doi: 10.7498/aps.73.20231224
    [3] Zeng Ping, Song Pan, Wang Xiao-Wei, Zhao Jing, Zhang Dong-Wen, Yuan Jian-Min, Zhao Zeng-Xiu. Dynamics of many-body fragmentation of carbon dioxide dimer tetravalent ions produced by intense femtosecond laser fields. Acta Physica Sinica, 2023, 72(18): 187901. doi: 10.7498/aps.72.20230699
    [4] Sun Hui, Liu Jing-Nan, Zhang Li-Xin, Yang Qi-Guo, Gao Ming. Numerical analysis of boundary line between liquid-like zone and gas-like zone of supercritical CO2. Acta Physica Sinica, 2022, 71(4): 040201. doi: 10.7498/aps.71.20211464
    [5] Li Ye-Jun, Guo Jing, Ma Jun-Ping, Tang Xian, Li Xin, Yan Bing. Concentration of dimers for BCl3 and rare gas atoms in BCl3 isotope separation. Acta Physica Sinica, 2022, 71(24): 243401. doi: 10.7498/aps.71.20221517
    [6] Wang Yu-Hao, Liu Jian-Guo, Xu Liang, Cheng Xiao-Xiao, Deng Ya-Song, Shen Xian-Chun, Sun Yong-Feng, Xu Han-Yang. Qualitative analysis of gas detection limit of Fourier infrared spectroscopy. Acta Physica Sinica, 2022, 71(9): 093201. doi: 10.7498/aps.71.20212366
    [7] Liu Xiang-Qun, Liu Yu, Ling Yi-Ming, Lei Jiu-Hou, Cao Jin-Xiang, Li Jin, Zhong Yu-Min, Shen Ming, Li Yan-Hua. Electron density depletion by releasing carbon dioxide in plasma wind tunnel. Acta Physica Sinica, 2022, 71(14): 145202. doi: 10.7498/aps.71.20212353
    [8] Wang Yu-Hao, Liu Jian-Guo, Xu Liang, Liu Wen-Qing, Song Qing-li, Jin Ling, Xu Han-Yang. Quantitative analysis of accuracy of concentration inversion under different temperature and pressure. Acta Physica Sinica, 2021, 70(7): 073201. doi: 10.7498/aps.70.20201672
    [9] Wang Qian, Bi Yan-Meng, Yang Zhong-Dong. Simulation analysis of aerosol effect on shortwave infrared remote sensing detection of atmospheric CO2. Acta Physica Sinica, 2018, 67(3): 039202. doi: 10.7498/aps.67.20171993
    [10] Tian Yuan, Sun You-Wen, Xie Pin-Hua, Liu Cheng, Liu Wen-Qing, Liu Jian-Guo, Li Ang, Hu Ren-Zhi, Wang Wei, Zeng Yi. Observation of ambient CH4 variations using ground-based high resolution Fourier transform solar spectrometry. Acta Physica Sinica, 2015, 64(7): 070704. doi: 10.7498/aps.64.070704
    [11] Li Xiang-Xian, Xu Liang, Gao Min-Guang, Tong Jing-Jing, Feng Ming-Chun, Liu Jian-Guo, Liu Wen-Qing. Influence factors of quantitative analysis precision of greenhouse gases and carbon isotope ratio based on infrared spectroscopy. Acta Physica Sinica, 2015, 64(2): 024217. doi: 10.7498/aps.64.024217
    [12] Liu Cheng, Bai Wen-Guang, Zhang Peng, Sun You-Wen, Si Fu-Qi. The inverse method of carbon monoxide from satellite measurement and the result analysis. Acta Physica Sinica, 2013, 62(3): 030704. doi: 10.7498/aps.62.030704
    [13] Li Xiang-Xian, Xu Liang, Gao Min-Guang, Tong Jing-Jing, Jin Ling, Li Sheng, Wei Xiu-Li, Feng Ming-Chun. High-precision CO2 and 13CO2 analysis. Acta Physica Sinica, 2013, 62(18): 180203. doi: 10.7498/aps.62.180203
    [14] Li Xiang-Xian, Gao Min-Guang, Xu Liang, Tong Jing-Jing, Wei Xiu-Li, Feng Ming-Chun, Jin Ling, Wang Ya-Ping, Shi Jian-Guo. Carbon isotope ratio analysis in CO2 based on Fourier transform infrared spectroscopy. Acta Physica Sinica, 2013, 62(3): 030202. doi: 10.7498/aps.62.030202
    [15] Cheng Si-Yang, Xu Liang, Gao Min-Guang, Jin Ling, Li Sheng, Feng Shu-Xiang, Liu Jian-Guo, Liu Wen-Qing. Study on remote sensing of carbon dioxide column concentration in the atmosphere by direct-sun infrared absorption spectroscopy. Acta Physica Sinica, 2013, 62(12): 124206. doi: 10.7498/aps.62.124206
    [16] Fu Peng-Tao, Han Ji-Feng, Mou Yan-Hong, Han Dan, Yang Chao-Wen. The axial distribution of carbon dioxide cluster in supersonic gas jet by Rayleigh scattering. Acta Physica Sinica, 2011, 60(5): 053602. doi: 10.7498/aps.60.053602
    [17] Qu Nian-Rui, Gao Fa-Ming. Theoretical study on electronic structure and properties of solid carbon dioxide. Acta Physica Sinica, 2011, 60(6): 067102. doi: 10.7498/aps.60.067102
    [18] Fu Dong, Wang Xue-Min, Liu Jian-Min. Investigation of phase equilibria and nucleation for supercritical carbon dioxide and model copolymer mixtures. Acta Physica Sinica, 2009, 58(5): 3022-3027. doi: 10.7498/aps.58.3022
    [19] Lu Yi-Gang, Peng Jian-Xin. Study of acoustical properties of supercritical carbon dioxide using liquid acoustical theory. Acta Physica Sinica, 2008, 57(2): 1030-1036. doi: 10.7498/aps.57.1030
    [20] Luo Ben-Yi, Lu Yi-Gang. Study of sound speed in near-critical carbon dioxide. Acta Physica Sinica, 2008, 57(7): 4397-4401. doi: 10.7498/aps.57.4397
Metrics
  • Abstract views:  7134
  • PDF Downloads:  275
  • Cited By: 0
Publishing process
  • Received Date:  15 June 2017
  • Accepted Date:  17 July 2017
  • Published Online:  05 November 2017

/

返回文章
返回
Baidu
map