搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温室气体及碳同位素比值红外光谱反演精度的影响因素研究

李相贤 徐亮 高闽光 童晶晶 冯明春 刘建国 刘文清

引用本文:
Citation:

温室气体及碳同位素比值红外光谱反演精度的影响因素研究

李相贤, 徐亮, 高闽光, 童晶晶, 冯明春, 刘建国, 刘文清

Influence factors of quantitative analysis precision of greenhouse gases and carbon isotope ratio based on infrared spectroscopy

Li Xiang-Xian, Xu Liang, Gao Min-Guang, Tong Jing-Jing, Feng Ming-Chun, Liu Jian-Guo, Liu Wen-Qing
PDF
导出引用
  • 由于傅里叶变换红外光谱(FTIR)技术在定量反演中受到气体温度、压强等气体特性以及水汽交叉吸收的影响, 使其在温室气体及碳同位素比值高精度检测领域的应用受到限制. 本文首先研究了气体特性与水汽吸收敏感性修正方法; 然后,结合实验研究中建立的敏感性修正函数, 对标准气体实测数据进行了气体特性敏感性修正, 修正后,五种测量组分的精密度均有明显提高, 其标准偏差降低倍数分布在1.80到3.38之间. 研究结果对于FTIR技术在大气本底温室气体及碳同位素比值高精度监测领域的应用具有重要意义.
    The quantitative analysis based on Fourier transform infrared (FTIR) technology is affected by the temperature and pressure properties of gas and the H2O cross section, so the applications of FTIR technology to high-precision measurement area of the greenhouse gases and isotope ratio are restricted. Firstly, the methods of correcting the gas property sensitivities and H2O cross sensitivity are studied, then the standard gas measurements are corrected with these sensitivity correcting functions established through experimental study. The standard deviations of CO, CO2, N2O, CH4 and δ13CO2 are all improved after correcting the sensitivities, and reduced by 1.80-3.38 times. These studies are significant for the applications of FTIR technology to the high-precision measurement area of greenhouse gases and isotope ratio.
    • 基金项目: 国家重大科学仪器设备开发专项(批准号: 2013YQ22064302)、国家自然科学基金(批准号:41305020)和“十二五”农村领域国家科技计划(批准号: 2012BAJ24B02-5)资助的课题.
    • Funds: Project supported by the National Key Scientific Instrument and Equipment Development Projects, China (Grant No. 2013YQ22064302), the National Natural Science Foundation of China (Grant No. 41305020), and the “Twelfth Five-Year” National Science and Technology Project in Rural Arear, China (Grant No. 2012BAJ24B02-5).
    [1]

    Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M, Miller H L 2007 Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge University Press) pIPCC. 2007. Climate Change 2007

    [2]

    16th WMO/IAEA Meeting on carbon Dioxide, Other Greenhouse Gases, and Related Measurement Techniques (GGMT-2011) Wellington, New Zealand, October 25-28, 2011

    [3]

    Feng M C, Gao M G, Xu L, Wei X L, Cheng S Y, Tong J J, Li X X, Jin L, Li S, Jiao Y 2012 Acta Opt. Sin. 32 0401002 (in Chinese) [冯明春, 高闽光, 徐亮, 魏秀丽, 程巳阳, 童晶晶, 李相贤, 金岭, 李胜, 焦洋 2012 光学学报 32 0401002]

    [4]

    Yang S, Li Y X, Ma Q Y, Xu X W, Niu P J, Li Y Z, Niu S L, Li H T 2005 Acta Phys. Sin. 54 2256 (in Chinese) [杨帅, 李养贤, 马巧云, 徐学文, 牛萍娟, 李永章, 牛胜利, 李洪涛 2005 54 2256]

    [5]

    Liu Z M, Liu W Q, Gao M G, Tong J J, Zhang T S, Xu L, Wei X L 2008 Chin. Phys. B 17 4184

    [6]

    Li X X, Gao M G, Xu L, Tong J J, Wei X L, Cheng S Y, Feng M C 2011 Infrared Technol. 33 473 (in Chinese) [李相贤, 高闽光, 徐亮, 童晶晶, 魏秀丽, 程巳阳, 冯明春 2011 红外技术 33 473]

    [7]

    Dubowski Y, Harush D, Shaviv A, Stone L, Linker R 2014 Soil. Sci. Am. J. 78 61

    [8]

    Angelbratt J, Mellqvist J, Blumenstock T, Borsdorff T, Brohede S, Duchatelet P, Forster F, Hase F, Mahieu E, Murtagh D 2011 Atmos. Chem. Phys. 11 6167

    [9]

    Rothman L S, Gordon I E, Barbe A, Chris Benner D, Bernath P F, Birk M, Boudon V, Brown L R, Campargue A, Champion J P, Chance K, Coudert L H, Dana V, Devi V M, Fally S, Flaud J M, Gamache R R, Goldman A, Jacquemart D, Kleiner I, Lacome N, Lafferty W J, Mandin J Y, Massie S T, Mikhailenko S N, Miller C E, Moazzen-Ahmadi N, Naumenko O V, Nikitin A V, Orphal J, Perevalov V I, Perrin A, Predoi-Cross A, Rinsland C P, Rotger M, Simeckova M, Smith M A H, Sung K, Tashkun S A, Tennyson J, Toth R A, Vandaele A C, van der Auwera J 2009 J. Quant. Spectrosc. Ra. 110 533

    [10]

    Hammer S, Griffith D W T, Konrad G, Vardag S, Caldow C, Levin I 2013 Atmos. Meas. Tech. 6 1153

    [11]

    Li X X, Xu L, Gao M G, Tong J J, Jin L, Li S, Wei X L, Feng M C 2013 Acta Phys. Sin. 62 180203 (in Chinese) [李相贤, 徐亮, 高闽光, 童晶晶, 金岭, 李胜, 魏秀丽, 冯明春 2013 62 180203]

    [12]

    William J P, David H P, Nickolas A G 2010 Technical Report for Period October 2009-September 2010

    [13]

    Long D A, Bielska K, Havey D K, Okumura M, Miller C E 2011 J. Chem. Phys. 135 064308

    [14]

    Nakamichi S, Kawaguchi Y, Fukuda H, Enami S, Hashimoto S, Kawasaki M, Umekawa T, Morino I, Suto H, Inoue G 2006 Phys. Chem. Chem. Phys. 8 364

    [15]

    Mohn J, Werner R A, Buchmann B, Emmenegger L 2007 J. Mol. Struct. 834 95

  • [1]

    Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M, Miller H L 2007 Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge University Press) pIPCC. 2007. Climate Change 2007

    [2]

    16th WMO/IAEA Meeting on carbon Dioxide, Other Greenhouse Gases, and Related Measurement Techniques (GGMT-2011) Wellington, New Zealand, October 25-28, 2011

    [3]

    Feng M C, Gao M G, Xu L, Wei X L, Cheng S Y, Tong J J, Li X X, Jin L, Li S, Jiao Y 2012 Acta Opt. Sin. 32 0401002 (in Chinese) [冯明春, 高闽光, 徐亮, 魏秀丽, 程巳阳, 童晶晶, 李相贤, 金岭, 李胜, 焦洋 2012 光学学报 32 0401002]

    [4]

    Yang S, Li Y X, Ma Q Y, Xu X W, Niu P J, Li Y Z, Niu S L, Li H T 2005 Acta Phys. Sin. 54 2256 (in Chinese) [杨帅, 李养贤, 马巧云, 徐学文, 牛萍娟, 李永章, 牛胜利, 李洪涛 2005 54 2256]

    [5]

    Liu Z M, Liu W Q, Gao M G, Tong J J, Zhang T S, Xu L, Wei X L 2008 Chin. Phys. B 17 4184

    [6]

    Li X X, Gao M G, Xu L, Tong J J, Wei X L, Cheng S Y, Feng M C 2011 Infrared Technol. 33 473 (in Chinese) [李相贤, 高闽光, 徐亮, 童晶晶, 魏秀丽, 程巳阳, 冯明春 2011 红外技术 33 473]

    [7]

    Dubowski Y, Harush D, Shaviv A, Stone L, Linker R 2014 Soil. Sci. Am. J. 78 61

    [8]

    Angelbratt J, Mellqvist J, Blumenstock T, Borsdorff T, Brohede S, Duchatelet P, Forster F, Hase F, Mahieu E, Murtagh D 2011 Atmos. Chem. Phys. 11 6167

    [9]

    Rothman L S, Gordon I E, Barbe A, Chris Benner D, Bernath P F, Birk M, Boudon V, Brown L R, Campargue A, Champion J P, Chance K, Coudert L H, Dana V, Devi V M, Fally S, Flaud J M, Gamache R R, Goldman A, Jacquemart D, Kleiner I, Lacome N, Lafferty W J, Mandin J Y, Massie S T, Mikhailenko S N, Miller C E, Moazzen-Ahmadi N, Naumenko O V, Nikitin A V, Orphal J, Perevalov V I, Perrin A, Predoi-Cross A, Rinsland C P, Rotger M, Simeckova M, Smith M A H, Sung K, Tashkun S A, Tennyson J, Toth R A, Vandaele A C, van der Auwera J 2009 J. Quant. Spectrosc. Ra. 110 533

    [10]

    Hammer S, Griffith D W T, Konrad G, Vardag S, Caldow C, Levin I 2013 Atmos. Meas. Tech. 6 1153

    [11]

    Li X X, Xu L, Gao M G, Tong J J, Jin L, Li S, Wei X L, Feng M C 2013 Acta Phys. Sin. 62 180203 (in Chinese) [李相贤, 徐亮, 高闽光, 童晶晶, 金岭, 李胜, 魏秀丽, 冯明春 2013 62 180203]

    [12]

    William J P, David H P, Nickolas A G 2010 Technical Report for Period October 2009-September 2010

    [13]

    Long D A, Bielska K, Havey D K, Okumura M, Miller C E 2011 J. Chem. Phys. 135 064308

    [14]

    Nakamichi S, Kawaguchi Y, Fukuda H, Enami S, Hashimoto S, Kawasaki M, Umekawa T, Morino I, Suto H, Inoue G 2006 Phys. Chem. Chem. Phys. 8 364

    [15]

    Mohn J, Werner R A, Buchmann B, Emmenegger L 2007 J. Mol. Struct. 834 95

  • [1] 袁洪瑞, 刘涛, 朱天鑫, 刘云, 李响, 陈杨, 段传喜. SF6分子的10.6 μm高分辨射流冷却激光吸收光谱.  , 2023, 72(6): 063301. doi: 10.7498/aps.72.20222285
    [2] 王钰豪, 刘建国, 徐亮, 成潇潇, 邓亚颂, 沈先春, 孙永丰, 徐寒杨. 傅里叶红外光谱气体检测限的定性分析.  , 2022, 71(9): 093201. doi: 10.7498/aps.71.20212366
    [3] 李春曦, 程冉, 叶学民. 接触角迟滞和气-液界面张力温度敏感性对液滴蒸发动态特性的影响.  , 2021, 70(20): 204701. doi: 10.7498/aps.70.20210294
    [4] 王钰豪, 刘建国, 徐亮, 刘文清, 宋庆利, 金岭, 徐寒杨. 不同温度压力对浓度反演精度的定量分析.  , 2021, 70(7): 073201. doi: 10.7498/aps.70.20201672
    [5] 刘丹丹, 黄印博, 孙宇松, 卢兴吉, 曹振松. 对流层顶高对拉萨地区温室气体柱浓度反演的影响.  , 2020, 69(13): 130201. doi: 10.7498/aps.69.20191431
    [6] 李书磊, 刘磊, 高太长, 黄威, 胡帅. 太赫兹波被动遥感卷云微物理参数的敏感性试验分析.  , 2016, 65(13): 134102. doi: 10.7498/aps.65.134102
    [7] 罗尹虹, 张凤祁, 王燕萍, 王圆明, 郭晓强, 郭红霞. 纳米静态随机存储器低能质子单粒子翻转敏感性研究.  , 2016, 65(6): 068501. doi: 10.7498/aps.65.068501
    [8] 左冬冬, 侯威, 王文祥. 中国西南地区干旱Copula函数模型对样本量的敏感性分析.  , 2015, 64(10): 100203. doi: 10.7498/aps.64.100203
    [9] 李红祺. 随机平衡设计傅里叶振幅敏感性分析方法和拓展傅里叶振幅敏感性分析方法在陆面过程模式敏感性分析中的应用探索.  , 2015, 64(6): 069201. doi: 10.7498/aps.64.069201
    [10] 田园, 孙友文, 谢品华, 刘诚, 刘文清, 刘建国, 李昂, 胡仁志, 王薇, 曾议. 地基高分辨率傅里叶变换红外光谱反演环境大气中的CH4浓度变化.  , 2015, 64(7): 070704. doi: 10.7498/aps.64.070704
    [11] 肖尧, 郭红霞, 张凤祁, 赵雯, 王燕萍, 丁李利, 范雪, 罗尹虹, 张科营. 累积剂量影响静态随机存储器单粒子效应敏感性研究.  , 2014, 63(1): 018501. doi: 10.7498/aps.63.018501
    [12] 丁李利, 郭红霞, 陈伟, 闫逸华, 肖尧, 范如玉. 累积辐照影响静态随机存储器单粒子翻转敏感性的仿真研究.  , 2013, 62(18): 188502. doi: 10.7498/aps.62.188502
    [13] 王建栋, 郭维栋, 李红祺. 拓展傅里叶幅度敏感性检验(EFAST)在陆面过程模式中参数敏感性分析的应用探索.  , 2013, 62(5): 050202. doi: 10.7498/aps.62.050202
    [14] 李相贤, 高闽光, 徐亮, 童晶晶, 魏秀丽, 冯明春, 金岭, 王亚萍, 石建国. 基于傅里叶变换红外光谱法CO2气体碳同位素比检测研究.  , 2013, 62(3): 030202. doi: 10.7498/aps.62.030202
    [15] 孙友文, 谢品华, 徐晋, 周海金, 刘诚, 王杨, 刘文清, 司福祺, 曾议. 采用加权函数修正的差分光学吸收光谱反演环境大气中的CO2垂直柱浓度.  , 2013, 62(13): 130703. doi: 10.7498/aps.62.130703
    [16] 吴浩, 侯威, 钱忠华, 胡经国. 基于气候变化综合指数的中国近50年来气候变化敏感性研究.  , 2012, 61(14): 149205. doi: 10.7498/aps.61.149205
    [17] 邱明, 张振华, 邓小清. 碳链输运对基团吸附的敏感性分析.  , 2010, 59(6): 4162-4169. doi: 10.7498/aps.59.4162
    [18] 李桂琴, 蔡军. graphene量子点的起伏效应对尺寸的敏感性研究.  , 2009, 58(9): 6453-6458. doi: 10.7498/aps.58.6453
    [19] 张光寅, 王宝明. 晶体剩余反射带短波边弱振动反射光谱结构的异常敏感性.  , 1984, 33(9): 1306-1313. doi: 10.7498/aps.33.1306
    [20] 雷啸霖. Tc级数的收敛半径对声子谱高频行为的敏感性.  , 1981, 30(8): 1127-1131. doi: 10.7498/aps.30.1127
计量
  • 文章访问数:  6025
  • PDF下载量:  539
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-09
  • 修回日期:  2014-08-22
  • 刊出日期:  2015-01-05

/

返回文章
返回
Baidu
map