-
在100 kJ激光装置上开展了基于三台阶整形脉冲的间接驱动惯性约束聚变内爆实验研究. 采用传统充气直柱金壁黑腔设计, 在激光脉冲作用后期, 腔内金等离子体运动对激光能量沉积和X光辐射场空间分布产生严重扰动, 导致靶丸赤道驱动偏弱, 形成不可接受的扁圆内爆. 本文采用新型的花生腔设计, 通过调节外环激光光斑及其产生的金泡的初始位置, 补偿和缓解金等离子体运动对黑腔X光辐射分布产生的扰动影响, 获得球对称的靶丸辐射驱动. 在靶丸驱动辐射温度相同的条件下, 由于驱动对称性得到显著改善, 实验观测到花生腔内爆热斑接近球形, 中子产额的测量结果与内爆一维模拟计算结果的比值(YOS)达到30%; 而直柱腔内爆热斑呈现扁圆形状, YOS仅为13%. 模拟计算和实验结果一致表明, 在三台阶整形脉冲驱动内爆实验中, 花生腔设计可以有效抑制外环金泡膨胀加剧产生的不利因素, 增强辐射驱动和内爆对称性调控, 并提高内爆性能.Indirectly driven inertial confinement fusion implosions using a three-step-shaped pulse are performed at a 100 kJ laser facility. At late time of the pulse, deposition of laser energy and distribution of X-ray radiation are significantly disturbed by motion of gold plasma in the original gas-filled cylindrical hohlraum with gold wall. As a result, owing to the lack of X-ray drive at the equator of the capsule, an unacceptable oblate implosion is produced. In the I-raum modified from the above cylindrical hohlraum, the initial positions of outer laser spots and gold bubbles are appropriately shifted to modify the disturbed radiation distribution due to plasma evolution, resulting in a spherically symmetric drive on the capsule. In the implosion shots with almost the same drive pulse, owing to improved symmetry, an spherical hotspot is observed in the new I-raum, and YOS (the ratio of measured neutron yield over simulated one) is up to 30%, while an oblate hotspot is observed in the cylinder, and YOS is only 13%. The simulation calculations and experimental measurements show that the I-raum can be used to significantly reduce the impact of gold bubble expansion in the three-step-shaped pulse driven implosion, which helps to tune the drive and implosion symmetry, and to improve its over-all performance.
-
Keywords:
- inertial confinement fusion /
- indirect-drive /
- implosion symmetry
[1] Nuckolls J, Wood L, Thiessen A, Zimmerman G 1972 Nature 239 139Google Scholar
[2] Lindl J D, Amendt P, Berger R L, et al. 2004 Phys. Plasmas 11 339Google Scholar
[3] Lindl J D, Landen O L, Edwards J, NIC Team 2014 Phys. Plasmas 21 020501Google Scholar
[4] Kozioziemski B, Mapoles E, Sater J, et al. 2011 Fusion Sci. Technol. 59 14Google Scholar
[5] Zheng W G, Wei X F, Zhu Q H, et al. 2016 High Power Laser Sci. Eng. 4 e21Google Scholar
[6] Pu Y D, Huang T X, Ge F J, et al. 2018 Plasma Phys. Control. Fusion 60 085017Google Scholar
[7] Li C Y, Wu C S, Huang T X, et al. 2019 Phys. Plasmas 26 022705Google Scholar
[8] Gu J F, Ge F J, Zou S Y, et al. 2018 Phys. Plasmas 25 122706Google Scholar
[9] Yan J, Shen H, Chen Z J, et al. 2021 Nucl. Fusion 61 016011Google Scholar
[10] Moses E I, Boyd R, Remington B, et al. 2009 Phys. Plasmas 16 041006Google Scholar
[11] Fernández J C, Goldman S R, Kline J L, et al. 2006 Phys. Plasmas 13 056319Google Scholar
[12] Edwards M J, Patel P K, Lindl J D, et al. 2013 Phys. Plasmas 20 070501Google Scholar
[13] Weber S V, Casey D T, Ede D C, et al. 2014 Phys. Plasmas 21 112706Google Scholar
[14] Park H S, Hurricane O A, Callahan D A, et al. 2014 Phys. Rev. Lett. 112 055001Google Scholar
[15] Pak A, Dewald E L, Landen O L, et al. 2015 Phys. Plasmas 22 122701Google Scholar
[16] Hinkel D E, Berzak Hopkins L F, Ma T, et al. 2016 Phys. Rev. Lett. 117 225002Google Scholar
[17] Ho D D, Haan S W, Salmonson J D, et al. 2016 J. Phys. Conf. Ser. 717(1) 012023
[18] Milovich J L, Dewald E L, Pak A, et al. 2016 Phys. Plasmas 23 032701Google Scholar
[19] Pape S L, Berzak Hopkins L F, Divol L, et al. 2016 Phys. Plasmas 23 056311Google Scholar
[20] Hall G N, Jones O S, Strozzi D J, et al. 2017 Phys. Plasmas 24 052706Google Scholar
[21] Callahan D A, Hurricane O A, Ralph J E, et al. 2018 Phys. Plasmas 25 056305Google Scholar
[22] Ralph J E, Landen O L, Divol L, et al. 2018 Phys. Plasmas 25 082701Google Scholar
[23] Kritcher A L, Ralph J, Hinkel D E, et al. 2018 Phys. Rev. E 98 053206Google Scholar
[24] Robey H F, Hopkins L B, Milovich J L, and Meezan N B, 2018 Phys. Plasmas 25 052706Google Scholar
[25] Zylstra A B, Hurricane O A, Callahan D A, et al. 2021 Nucl. Fusion 61 116066Google Scholar
[26] Zylstra A B, Hurricane O A, Zimmerman G B 2022 Nature 601 542Google Scholar
[27] Abu-Shawareb H, et al. (ICF Collaboration). 2022 Phys. Rev. Lett. 129 075001Google Scholar
[28] Li Z C, Jiang X H, Liu S Y, Huang T X, Zheng J, Yang J M, Li S W, Guo L, Zhao X F, Du H B, Song T M, Yi R Q, Liu Y G, Jiang S E, DingY K 2010 Rev. Sci. Instrum. 81 073504Google Scholar
[29] Jiang W, Yan J, Ge F J, Chen T, Jing L F, Chen Z J, Chen B L, Pu Y D, Yu B, Duan X X, Huang T X, Zheng J, DingY K 2019 Phys. Plasmas 26 022704Google Scholar
[30] Tang Q, Chen J B, Xiao Y Q, Yi T, Liu Z J, Zhan X Y, Song Z F 2020 Rev. Sci. Instrum. 91 023508Google Scholar
[31] Song Z F, Chen J B, Liu Z J, Zhan X Y, Tang Q 2015 Plasma Sci. Technol. 17 337Google Scholar
[32] Fan Z F, Zhu S P, Pei W B, Ye W H, Li M, Xu X W, Wu J F, Dai Z S, Wang L F 2012 EPL: Lett. J. Explor. Front. Phys. 99 65003
[33] 宋鹏, 翟传磊, 李双贵, 等 2015 强激光与粒子束 27 032007
Song P, Zhai C L, Li S G, et al. 2015 High Power Laser Part. Beams 27 032007 (in Chinese)
[34] 裴文兵, 朱少平 2009 物理 38 559
Pei W B, Zhu S P 2009 Physics 38 559
-
图 4 激光能量吸收(第一象限)、电子温度Te(第二象限)、电子密度Ne(第三象限)和辐射温度Tr(第三象限)在激光加载4.0 ns时刻的空间分布 (a)直柱腔; (b)花生腔
Fig. 4. Distributions of laser energy absorption (1 st quadrant), electron temperature Te (2 nd quadrant), electron density Ne (3 rd quadrant), and radiation temperature Tr (4 th quadrant), respectively, at 4.0 ns: (a) Cylinder; (d) I-raum.
图 5 激光-X光辐射能量转换 (a)实际打靶激光功率; (b)黑腔局部辐射温度Trhoh的模拟计算和实际测量结果
Fig. 5. Laser energy converted into X-ray radiation: (a) Laser power measured for cylinder (blue dash) and for I-raum (red solid), respectively; (b) local radiation temperature Trhoh simulated for cylinder (blue cross) and for I-raum (red circle), and measured for cylinder (blue dash) and for I-raum (red solid), respectively.
-
[1] Nuckolls J, Wood L, Thiessen A, Zimmerman G 1972 Nature 239 139Google Scholar
[2] Lindl J D, Amendt P, Berger R L, et al. 2004 Phys. Plasmas 11 339Google Scholar
[3] Lindl J D, Landen O L, Edwards J, NIC Team 2014 Phys. Plasmas 21 020501Google Scholar
[4] Kozioziemski B, Mapoles E, Sater J, et al. 2011 Fusion Sci. Technol. 59 14Google Scholar
[5] Zheng W G, Wei X F, Zhu Q H, et al. 2016 High Power Laser Sci. Eng. 4 e21Google Scholar
[6] Pu Y D, Huang T X, Ge F J, et al. 2018 Plasma Phys. Control. Fusion 60 085017Google Scholar
[7] Li C Y, Wu C S, Huang T X, et al. 2019 Phys. Plasmas 26 022705Google Scholar
[8] Gu J F, Ge F J, Zou S Y, et al. 2018 Phys. Plasmas 25 122706Google Scholar
[9] Yan J, Shen H, Chen Z J, et al. 2021 Nucl. Fusion 61 016011Google Scholar
[10] Moses E I, Boyd R, Remington B, et al. 2009 Phys. Plasmas 16 041006Google Scholar
[11] Fernández J C, Goldman S R, Kline J L, et al. 2006 Phys. Plasmas 13 056319Google Scholar
[12] Edwards M J, Patel P K, Lindl J D, et al. 2013 Phys. Plasmas 20 070501Google Scholar
[13] Weber S V, Casey D T, Ede D C, et al. 2014 Phys. Plasmas 21 112706Google Scholar
[14] Park H S, Hurricane O A, Callahan D A, et al. 2014 Phys. Rev. Lett. 112 055001Google Scholar
[15] Pak A, Dewald E L, Landen O L, et al. 2015 Phys. Plasmas 22 122701Google Scholar
[16] Hinkel D E, Berzak Hopkins L F, Ma T, et al. 2016 Phys. Rev. Lett. 117 225002Google Scholar
[17] Ho D D, Haan S W, Salmonson J D, et al. 2016 J. Phys. Conf. Ser. 717(1) 012023
[18] Milovich J L, Dewald E L, Pak A, et al. 2016 Phys. Plasmas 23 032701Google Scholar
[19] Pape S L, Berzak Hopkins L F, Divol L, et al. 2016 Phys. Plasmas 23 056311Google Scholar
[20] Hall G N, Jones O S, Strozzi D J, et al. 2017 Phys. Plasmas 24 052706Google Scholar
[21] Callahan D A, Hurricane O A, Ralph J E, et al. 2018 Phys. Plasmas 25 056305Google Scholar
[22] Ralph J E, Landen O L, Divol L, et al. 2018 Phys. Plasmas 25 082701Google Scholar
[23] Kritcher A L, Ralph J, Hinkel D E, et al. 2018 Phys. Rev. E 98 053206Google Scholar
[24] Robey H F, Hopkins L B, Milovich J L, and Meezan N B, 2018 Phys. Plasmas 25 052706Google Scholar
[25] Zylstra A B, Hurricane O A, Callahan D A, et al. 2021 Nucl. Fusion 61 116066Google Scholar
[26] Zylstra A B, Hurricane O A, Zimmerman G B 2022 Nature 601 542Google Scholar
[27] Abu-Shawareb H, et al. (ICF Collaboration). 2022 Phys. Rev. Lett. 129 075001Google Scholar
[28] Li Z C, Jiang X H, Liu S Y, Huang T X, Zheng J, Yang J M, Li S W, Guo L, Zhao X F, Du H B, Song T M, Yi R Q, Liu Y G, Jiang S E, DingY K 2010 Rev. Sci. Instrum. 81 073504Google Scholar
[29] Jiang W, Yan J, Ge F J, Chen T, Jing L F, Chen Z J, Chen B L, Pu Y D, Yu B, Duan X X, Huang T X, Zheng J, DingY K 2019 Phys. Plasmas 26 022704Google Scholar
[30] Tang Q, Chen J B, Xiao Y Q, Yi T, Liu Z J, Zhan X Y, Song Z F 2020 Rev. Sci. Instrum. 91 023508Google Scholar
[31] Song Z F, Chen J B, Liu Z J, Zhan X Y, Tang Q 2015 Plasma Sci. Technol. 17 337Google Scholar
[32] Fan Z F, Zhu S P, Pei W B, Ye W H, Li M, Xu X W, Wu J F, Dai Z S, Wang L F 2012 EPL: Lett. J. Explor. Front. Phys. 99 65003
[33] 宋鹏, 翟传磊, 李双贵, 等 2015 强激光与粒子束 27 032007
Song P, Zhai C L, Li S G, et al. 2015 High Power Laser Part. Beams 27 032007 (in Chinese)
[34] 裴文兵, 朱少平 2009 物理 38 559
Pei W B, Zhu S P 2009 Physics 38 559
计量
- 文章访问数: 3859
- PDF下载量: 124
- 被引次数: 0